The Business Prospect of Biomass to Methanol Development in Namibia: A Review
Contenido principal del artículo
Resumen
In Indonesia, the demand for methanol as renewable alternatives or chemical feedstock has been rising significantly to address the shortage of its domestic fossil fuels need. In the future, Indonesia expects to increase their methanol production using gasification process to balance its domestic demand. This paper presents the business prospect of methanol production from overseas, i.e., Namibia using biomass (encroacher bush types) feedstocks. It is concluded that biomass is available as an alternative feedstock to generate pure methanol. In Namibia, biomass is one of the most abundant and easily accessed resources for energy uses. However, without appropriate business endorsement by the government, such as a well-designed policies and incentives, the project’s prospect is still limited and very costly to be implemented. The financial planning of investment, particularly in how to find the best technological design of methanol processing, is highly essential to gain the maximum net business profit.
Citas
Andesson, J., Lundgren, J., & Marklund, M. (2014). Methanol production via pressurized entrained flow biomass gasification–techno-economic comparison of integrated vs. stand-alone production. Biomass and Bioenergy 64, 256-268. https://doi.org/10.1016/j.biombioe.2014.03.063
Amaral, A.F., Previtali, D., Dell’Angelo, A., Bisotti, F., Di Pretoro, A., Andoglu, E.M., Colombo, S., & Manenti, F. (2019). Methanol production from biomass gasification: techno-economic assessment of different feedstocks. Chemical Engineering Transactions 74. https://doi.org/10.3303/CET1974207.
Applied Energy Symposium and Forum, Renewable Energy Integration with Mini/Microgrids, REM 2017, 18-20 October 2017, Tianjin, China.
Arora, R., Sharma, N.K., Kumar, S., & Sani, R. K. (2019). Chapter 9–Lignocellulosic ethanol: feedstocks and bioprocessing. Bioethanol production from food crops: sustainable sources, interventions, and challenges, 165-185. https://doi.org/10.1016/B978-0-12-8137666.00009-6.
Arteaga-Pérez, L.E., Gómez-Cápiro, O., Karelovic, A., & Jiménez, R. (2016). Chemical Engineering Journal 286, 663-678.
Baruah, J., Nath, B. K., Sharma, R., Kumar, S., Deka, R. C., Baruah, D. C., & Kalita, E. (2018). Recent trends in the preatreatment of lignocellulosic biomass for value-added products. Front. Energy Res, 6. https://doi.org/10.3389/fenrg.2018.00141
Basu, P. (2010). Biomass gasification and pyrolysis: practical design. Elsevier.
Basu, P. (2013). Biomass gasification, pyrolysis and torrefaction: practical design and theory. Elsevier.
Berggren, M. (2019). Global Methanol – State of the Industry. Presentation at the 22nd IMPCA Asian Methanol Conference, Singapore, November 5-7.
Bertau, M., Offermanns, H., Plass, L., Schmidt, F., Wernicke, HJ. (2014). Methanol: the basic chemical and energy feedstock of the future. Asinger’s Vision Today. Springer Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39709-7
Bhatia, S. K., Kim, J., Song, H. S., Kim, H. J., Jeon, J. M., Sathiyanarayanan, G., et al. (2017). Microbial biodiesel production from oil palm biomass hydrolysate using marine rhodococcus sp. YHY01. Bioresour. Technol. 233, 99-109. https://doi.org/10.1016/j.biortech.2017.02.061
Borand, M. N. & Karaosmanoglu, F. (2018). Effects of Organosolv Pretreatment Conditions for Lignocellulosic Biomass in Biorefinery Applications: A Review. J. Renew. Sustain Ener. 10, 033104. https://doi.org/10.1063/1.5025876
Brown, A., Waldheim, L., Landalv, I., Saddler, J., Ebadian, M., McMillan, J. D., Bonomi, A., & Klein, B. (2020). Advanced Biofuels-Potential for Cost Reduction. https://ibit.ly/Iu4S
Clausen, L.R. (2011). Design of novel DME/methanol synthesis plants based on gasification of biomass. https://ibit.ly/rd1z
Dahlquist, E. (2013). Technologies for Converting Biomass to Useful Energy – Combustion, Gasification, Pyrolysis, Torrefaction and Fermentation. Series: Sustainable Energy Developments.
De Klerk, J.N. (2004). Bush Encroachment in Namibia. Report on Phase 1 of the Bush En croachment Research, Monitoring and Management Project.
Diyanilla, R., Hamidon, T.S., Suryanegara, L., & Hussin, M. H. (2020). Overview of Pretreatment Methods Employed on Oil Palm Biomass in Producing Value-added Products: A Review. BioResources 15(4), 9935-9997. https://doi.org/10.15376/BIORES.15.4.DIYANILLA
Du, H., Liu, C., Zhang, Y., Yu, G., Si, C., and Li, B. (2016). Preparation and characterization of functional cellulose nanofibrils via formic acid hydrolysis pretreatment and the followed high-pressure homogenization. Industrial Crops and Products. 94, 736-745. https://doi.org/10.1016/j.indcrop.2016.09.059
Firmansyah, H., Tan, Y., & Yan, J. (2018). Power and methanol production from biomass combined with solar and wind energy: analysis and comparison. Energy Procedia 145, 576-581. https://doi.org/10.1016/j.egypro.2018.04.084
Giuliano, A., Freda, C., & Catizzone, E. (2020). Techno-economic assessment of bio-syngas production for methanol synthesis: a focus on the water-gas shift and carbon capture sections. Bioengineering, 7(3), 70. https://doi.org/10.3390/bioengineering7030070
Haldor Topsoe (2019). Electrify methanol production for a sustainable business. https://info.topsoe.com/emethanol.
Hansen, J. B., Nielsen, P. E. H., & Haldor Topsoe. (2008). 13.13. Methanol Synthesis. https://ibit.ly/d3ax
Hosseini Koupaie, E., Dahadha, S., Bazyar Lakeh, A. A., Azizi, A., & Elbeshbishy, E. (2019). Enzymatic Pretreatment of Lignocellulosic Biomass for Enhanced Biomethane Production – A Review. Journal of Environmental Management 233, 774-784. https://doi.org/10.1016/j.jenvman.2018.09.106
Howarda, W.E. & Bethiana, T.N. (2020). Pra Desain Pabrik Metanoldari Bambu. https://repository.its.ac.id/77822/1/02211640000027 Undergraduate_Theses.pdf
Indonesian Chamber of Commerce (“KADIN”) of Republic of Indonesia (2020). https://ibit.ly/iojS
International Energy Agency (IEA) Bioenergy. (2007). Potential contribution of bioenergy to the world’s future energy demand. https://ibit.ly/w2g_
International Renewable Energy Agency (IRENA) (2021). Innovation Outlook Renewable Methanol. https://ibit.ly/w-r7
International Renewable Energy Agency (IRENA) (2014). Global bioenergy: Supply and demand Projections. A Working Paper for REmap 2030. https://ibit.ly/A8-t
Kärcher, M.A., Iqbal, Y., Lewandowski, I., and Senn, T. (2015). Comparing the performance of Mischanthus x giganteus and wheat straw biomass in sulfuric acid based pretreatment. Bioresour. Technol. 180, 360-364. https://doi.org/10.1016/j/bior-tech.2014.12.107.
Jeong, S. Y. & Lee, J. W. (2016). Optimization of pretreatment condition for ethanol production from oxalic acid pretreated biomass by response surface methodology. Industrial Crops and Products, 79, 1-6. https://doi.org/10.1016/j.indcrop.2015.10.036
Jung, Y. H., Park, H. M., & Kim, K. H. (2015). Whole slurry saccharification and fermentation of maleic acid-pretreated rice straw for ethanol production. Bioprocess Biosyst Engineering 38, 1639-1644. https://doi.org/10.1007/s00449-015-1405-8
Kärcher, M. A., Iqbal, Y., Lewandowski, I., & Senn, T. (2015). Comparing the performance of Miscanthus x giganteus and wheat straw biomass in sulfuric acid based pretreatment. Bioresource Technology 180, 360-364. https://doi.org/10.1016/j.biortech.2014.12.107
Ministry of Industrial, Republic of Indonesia. (2020). Kemenperin Dorong Pengembangan Gasifikasi Batubara di Tanah Air. https://ibit.ly/
RAMK Kim, I., Seo, Y. H., Kim, G. Y., & Han, J. I. (2015). Co-production of bioethanol and biodiesel from corn stover pretreated with nitric acid. Fuel 143, 285-289. https://doi.org/10.1016/j. fuel.2014.11.031
Kumar, P., Barret, D.M., Delwiche, M.J., & Stroeve, P. (2009). Methods for pre-treatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Industrial & Engineering Chemistry Research. https://doi.org/10.1021/ie801542g
Larson E. D., Jin, H. & Celik, F. E. (2009). Supporting information to: large-scale gasification-based coproduction of fuels and electricity from switchgrass. https://ibit.ly/odJX
Lloyd, T. A. & Wyman, C. E. (2005). Combined sugar yields for dilute sulfuric acid pretreatment of corn sver followed by enzymatic
hydrolysis of the remaining solids. Bioresource Technology 96(18), 1967-1977. https://doi.org/10.1016/j.biortech.2005.01.011
Methanol Market Services Asia (MMSA) (2021). Methanol Price and Supply/Demand. https://www.methanol.org/methanol-price-supply-demand/
Ministry of Industrial of Republic of Indonesia (2021). https://ibit.ly/BMW_
Ministry of Mineral and Energy Resources (MEMR) of Republic of Indonesia Website. (2021) https://migas.esdm.go.id/post/read/kembangkan-metanol-kementerian-esdm-gandeng-the-methanol-institute.
Mphoswa, R. (2015). Production of methanol from biomass-plant design. Conference Chemical Process Design. https://www.researchgate.net/publication/284411944_Methanol_Production_from_Biomass
Nabilah-Jansar, K., Roslan, A. M. & Hassan, M. A. (2018). Review article: appropriate hydrothermal pretreatment of oil palm biomass
in palm oil mill. Pertanika Journal of Scholarly Research Reviews 4(1), 31-40.
Nair, R. B., Lundin, M., Brandberg, T., Lennartsson, P. R., & Taherzadeh, M. J. (2015). Dilute phosphoric acid pretreatment of wheat bran for enzymatic hydrolysis and subsequent ethanol production by edible fungi Neurospora intermedia. Industrial Crops and Products. 69, 314-323. https://doi.org/10.1016/j.indcrop.2015.02.038
Noorshamsiana, A.W., Nur Eliyanti, A. O., Fatiha, I., & Astimar, A. A. (2017). A review on extraction processes of lignocellulosic chemicals from oil palm biomass. Journal of Oil Palm Research 29, 512-527. https://doi.org/10.21894/jopr.2017.00016
Olah, G. A., Goeppert, A., & Prakash, G. K. (2009). Chemical recycling of carbon dioxide to methanol and dme: from greenhouse gas
to renewable, environmentally carbon neutral fuels and synthetic hydrocarbons. J. Org. Chem 74, 487-498. https://doi.org/10.1021/jo801260f
Ollero, P., Serrera, A., Arjona, R. & Alcantarilla, S. (2003). The CO2 gasification kinetics of olive residue. Biomass Bioenergy 24, 151-161. https://doi.org/10.1016/S0961-9534(02)00091-0
Peters, M.S., and Timmerhaus, R.E. (2003). Plant design and economics for chemical engineers. McGraw-Hill, New York, NY 5th ed.
Pérez-Fortes, M., Schöneberger, J.C., Boulamanti, A. & Tzimas, E. (2016). Methanol syn thesis using captured CO2 as raw material:
techno-economic and environmental assessment. Applied Energy 161, 718-732. https://doi.org/10.1016/j.apenergy.2015.07.067
Petrick, W. (2020). EIA for the Proposed Encroacher Bush Biomass Power Project in Namibia. http://theeis.com/elibrary/sites/default/files/downloads/literature/1500_EMP_Otjikoto%20Biomass%20Power%20Station.pdf
Quesada, J., Rubio, M., & Gomez, D. (1999). Ozonation of lignin rich solid fractions from corn stalks. Journal of Wood Chemistry and Technology, 19, 115-137. https://doi.org/10.1080/02773819909349603
Rapagná, S., Jand, N., Kiennemann, A., & Foscolo, P.U. (2000). Steam gasification of biomass in a fluidised-bed of olivine particles. Biomass Bioenergy 19, 187-197. https://doi.org/10.1016/S0961-9534(00)00031-3
Ries, M. (2017). Environmental and economic impacts of small-scale biomass gasification. [thesis in partial fulfilment of the requirements for the degree of Master of Science, University of Minnesota] https://core.ac.uk/download/pdf/211355188.pdf
South Africa Institute for Environmental Assessment (SAIEA). (2016). Strategic Environmental Assessment of Large-Scale Bush Thinning and Value Addition Activities in Namibia. https://www.dasnamibia.org/download/studies/STUDY-BushThinning-Final.pdf
SGS inspire team (2020). Methanol: properties and uses. https://www.methanol.org/wp-content/uploads/2020/03/SGS-INSPIRE Methanol-Properties-and-Uses.pdf
Sindhu, R., Binod, P. & Pandey, A. (2016). Biological Pretreatment of Lignocellulosic Biomass– An overview. Bioresource Technology
, 76-82. https://doi.org/10.1016/j.biortech.2015.08.030
Tsegaye, B., Balomajumder, C., & Roy, P. (2019). Microbial delignification and hydrolysis of lignocellulosic biomass to enhance biofuel
production: an overview and future prospect. Bulletin of the National Research Centre 43(1). https://doi.org/10.1186/s42269-0190094-x
U.S. Department of Energy (DOE) (2016). Bioenergy Technologies Office: Multi-Year Program Plan. https://www.energy.gov/eere/bioenergy/articles/bioenergy-technologies-office-multi-year-program-plan-march-2016
Van der Drift A. & Boerrigter, H. (2006). Synthesis gas from biomass. http://www.ecn.nl/publications/
Vertes, A.A., Qureshi, N., Blaschek, H.P. &Yukawa, H. (2010). Biomass to biofuels: strategies for global industries. Wiley. Vidal, P. F., & Molinier, J. (1988). Ozonolysis of lignin-improvement of in vitro digestibility of poplar sawdust. biomass 16, 1-17. https://doi.org/10.1016/0144-4565(88)90012-1
Yadav, P., Athanassiadis, D., Yacout, D.M.M., Tysklind, M., Upadhyayula, V. K. K. (2020). Environmental impact and environmental cost assessment of methanol production from wood biomass. Environmental Pollution 265,114990.
https://doi.org/10.1016/j.envpol.2020.114990
Zu, S., Li, W. Z., Zhang, M., Li, Z., Wang, Z., Jameel, H. & Chang, H. (2014). Pretreatment of corn stover for sugar production using dilute
hydrochloric acid followed by lime. Bioresource Technology 152, 364-370. https://doi.org/10.1016/j.biortech.2013.11.034
Zwart, R. W. R., van der Drift, A., Bos, A., Visser, H. J. M., Cieplik, M. K., Könemann, H. W. J. (2009). Oil-based gas washing- flexible tar removal for high-efficient production of clean heat and power as well as sustainable fuels and chemicals. Environmental Progress &
Sustainable Energy 28(3), 324-335. https://doi.org/10.1002/ep.10383