Prediction nomogram for risk stratification in patients with COVID-19
Main Article Content
Abstract
COVID-19 can progress to severe forms of the disease with high mortality, so it has been necessary to identify predictive factors that allow stratifying the risk in patients. A retrospective analytical study was carried out in a cohort of 150 patients from Manuel Fajardo Hospital in Villa Clara, Cuba, from March to June 2020. With the information obtained, a severity prognostic index was constructed by means of a multivariate binary logistic regression model, in which the probability of the patient evolving towards severity was expressed as a function of the set of variables that were identified as predictors of the health event of interest. R software version 4.0.2 (22-06-2020) was used to summarize the data and apply the hypothesis tests. With the final results, a prognostic index was elaborated through a mathematical equation on which the model is based. A prediction nomogram was constructed to facilitate its interpretation, which constituted the main output of this study. The variables with the highest predictive power, which definitely remained in the model and with the nomogram was constructed were: age (p=0.049), arterial hypertension (p=0.013), neutrophil/lymphocyte ratio (p=0.004), lactate dehydrogenase (p=0.039) and arterial oxygen saturation (p=0.044). The Hosmer-Lemeshow test statistic result was p= 0.976 and the discriminatory capacity given by the area under the ROC curve (receiver operating characteristic curve) was equal to 0.988 (AUC: 0.9882, 95% CI: 0.9756-1). The optimal cut-off point was 0.099. We conclude that our nomogram is a very useful tool for the early identification of patients at risk of progressing to severe forms of COVID-19. In this way, it facilitates better stratification and the adequacy of timely treatment, capable of slowing disease progression
References
Beigel, J. H., Tomashek, K. M., & Dodd, L. E. (2020). Remdesivir for the Treatment of Covid-19 - Preliminary Report. Reply. The New England journal of medicine, 383(10): 994. Disponible en: https://doi.org/10.1056/NEJMc2022236
Cecconi, M., Piovani, D., Brunetta, E., Aghemo, A., Greco, M., Ciccarelli, M., Angelini, C., Voza, A., Omodei, P., Vespa, E., Pugliese, N., Parigi, T. L., Folci, M., Danese, S., & Bonovas, S. (2020). Early Predictors of Clinical Deterioration in a Cohort of 239 Patients Hospitalized for Covid-19 Infection in Lombardy, Italy. Journal of clinical medicine, 9(5): 1548. Disponible en: https://doi.org/10.3390/jcm9051548
Chen, N., Zhou, M., Dong, X., Qu, J., Gong, F., Han, Y., Qiu, Y., Wang, J., Liu, Y., Wei, Y., Xia, J., Yu, T., Zhang, X., & Zhang, L. (2020). Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet (London, England), 395(10223): 507–513. Disponible en: https://doi.org/10.1016/S0140-6736(20)30211-7
Gong, J., Ou, J., Qiu, X., Jie, Y., Chen, Y., Yuan, L., Cao, J., Tan, M., Xu, W., Zheng, F., Shi, Y., & Hu, B. (2020). A Tool for Early Prediction of Severe Coronavirus Disease 2019 (COVID-19): A Multicenter Study Using the Risk Nomogram in Wuhan and
Guangdong, China. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America, 71(15): 833–840. Disponible en: https://doi.org/10.1093/cid/ciaa443
Goyal, P., Choi, J. J., Pinheiro, L. C., Schenck, E. J., Chen, R., Jabri, A., Satlin, M. J., Campion, T. R., Jr, Nahid, M., Ringel, J. B., Hoffman, K. L., Alshak, M. N., Li, H. A., Wehmeyer, G. T., Rajan, M., Reshetnyak, E., Hupert, N., Horn, E. M., Martinez, F. J.,
Gulick, R. M., … Safford, M. M. (2020). Clinical Characteristics of Covid-19 in New York City. The New England journal of medicine, 382(24): 2372–2374. Disponible en: https://doi.org/10.1056/NEJMc2010419
Grasselli, G., Zangrillo, A., Zanella, A., Antonelli, M., Cabrini, L., Castelli, A., Cereda, D., Coluccello, A., Foti, G., Fumagalli, R., Iotti, G., Latronico, N., Lorini, L., Merler, S., Natalini, G., Piatti, A., Ranieri, M. V., Scandroglio, A. M., Storti, E., Cecconi, M., …
COVID-19 Lombardy ICU Network (2020). Baseline Characteristics and Outcomes of 1591 Patients Infected With SARS-CoV-2 Admitted to ICUs of the Lombardy Region, Italy. JAMA, 323(16): 1574–1581. Disponible en: https://doi.org/10.1001/jama.2020.5394
Guan, W. J., Liang, W. H., Zhao, Y., Liang, H. R., Chen, Z. S., Li, Y. M., Liu, X. Q., Chen, R. C., Tang, C. L., Wang, T., Ou, C. Q., Li, L., Chen, P. Y., Sang, L., Wang, W., Li, J. F., Li, C. C., Ou, L. M., Cheng, B., Xiong, S., … China Medical Treatment Expert Group for COVID-19 (2020a). Comorbidity and its impact on 1590 patients with COVID-19 in China: a nationwide analysis. The European respiratory journal, 55(5): 2000547. Disponible en: https://doi.org/10.1183/13993003.00547-2020
Guan, W. J., Ni, Z. Y., Hu, Y., Liang, W. H., Ou, C. Q., He, J. X., Liu, L., Shan, H., Lei, C. L., Hui, D., Du, B., Li, L. J., Zeng, G., Yuen, K. Y., Chen, R. C., Tang, C. L., Wang, T., Chen, P. Y., Xiang, J., Li, S. Y., … China Medical Treatment Expert Group for Covid-19 (2020b). Clinical Characteristics of Coronavirus Disease 2019 in China. The New England journal of medicine, 382(18): 1708–1720. Disponible en: https://doi.org/10.1056/NEJMoa2002032
Gupta, R. K., Marks, M., Samuels, T., Luintel, A., Rampling, T., Chowdhury, H., Quartagno, M., Nair, A., Lipman, M., Abubakar, I., van Smeden, M., Wong, W. K., Williams, B., & Noursadeghi, M., (2020). Systematic evaluation and external validation of 22 prognostic models among hospitalised adults with COVID-19: an observational cohort study. The European respiratory journal, 56(6): 2003498. Disponible en: https://doi.org/10.1183/13993003.03498-2020
Henry, B. M., Aggarwal, G., Wong, J., Benoit, S., Vikse, J., Plebani, M., & Lippi, G. (2020). Lactate dehydrogenase levels predict coronavirus disease 2019 (COVID-19) severity and mortality: A pooled analysis. The American journal of emergency medicine, 38(9): 1722–1726. Disponible en: https://doi.org/10.1016/j.ajem.2020.05.073.
Horby, P., Lim, W. S., Emberson, J. R., Mafham, M., Bell, J. L., Linsell, L., Staplin, N., Brightling, C., Ustianowski, A., Elmahi, E., Prudon, B., Green, C., Felton, T., Chadwick, D., Rege, K., Fegan, C., Chappell, L. C., Faust, S. N., Jaki, T., … Landray, M. J. (2021). Dexamethasone in Hospitalized Patients with Covid-19. The New England journal of medicine, 384(8): 693–704. Disponible en:https://doi.org/10.1056/NEJMoa2021436
Imam, Z., Odish, F., Gill, I., O'Connor, D., Armstrong, J., Vanood, A., Ibironke, O., Hanna, A., Ranski, A., & Halalau, A. (2020). Older age and comorbidity are independent mortality predictors in a large cohort of 1305 COVID-19 patients in Michigan, United States. Journal of internal medicine, 288(4): 469–476. Disponible en: https://doi.org/10.1111/joim.13119
Ji, D., Zhang, D., Xu, J., Chen, Z., Yang, T., Zhao, P., Chen, G., Cheng, G., Wang, Y., Bi, J., Tan, L., Lau, G., & Qin, E. (2020). Prediction for Progression Risk in Patients With COVID-19 Pneumonia: The CALL Score. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America, 71(6); 1393–1399. Disponible en: https://doi.org/10.1093/cid/ciaa414
Ji, W., Wang, W., Zhao, X. and Zai, J.,&Wong K. (2020). Cross-species transmission of the newly identified coronavirus 2019-nCoV. Journal of medical virology, 92: 433– 440. https://doi.org/10.1002/jmv.25682
Kamyshnyi, A., Krynytska, I., Matskevych, V., Marushchak, M., & Lushchak, O. (2020). Arterial Hypertension as a Risk Comorbidity Associated with COVID-19 Pathology. International journal of hypertension, 2020, 8019360. Disponible en: https://doi.org/10.1155/2020/8019360
Kermali, M., Khalsa, R. K., Pillai, K., Ismail, Z., & Harky, A. (2020). The role of biomarkers in diagnosis of COVID-19 - A systematic review. Life sciences, 254, 117788. Disponible en: https://doi.org/10.1016/j.lfs.2020.117788.
Liang, W., Liang, H., Ou, L., Chen, B., Chen, A., Li, C., Li, Y., Guan, W., Sang, L., Lu, J., Xu, Y., Chen, G., Guo, H., Guo, J., Chen, Z., Zhao, Y., Li, S., Zhang, N., Zhong, N., He, J., … China Medical Treatment Expert Group for COVID-19 (2020). Development and Validation of a Clinical Risk Score to Predict the Occurrence of Critical Illness in Hospitalized Patients With COVID-19. JAMA internal medicine, 180(8): 1081–1089. Disponible en: https://doi.org/10.1001/jamainternmed.2020.2033
Lippi, G., & Plebani, M. (2020). Laboratory abnormalities in patients with COVID-2019 infection. Clinical chemistry and laboratory medicine, 58(7): 1131–1134. Disponible en: https://doi.org/10.1515/cclm-2020-0198
Lipsitch, M., Swerdlow, D. L., & Finelli, L. (2020). Defining the Epidemiology of Covid-19 - Studies Needed. The New England journal of medicine, 382(13): 1194–1196. Disponible en: https://doi.org/10.1056/NEJMp2002125
Lu, H., Stratton, C. & Tang, Y., 2020. Outbreak of pneumonia of unknown etiology in Wuhan, China: The mystery and the miracle. Journal of medical virology, 92(4): 401-402. Disponible en: https://doi.org/10.1002/jmv.25678.
Naciones Unidas. (2020) Informe de políticas: Los efectos de laCOVID-19 en laspersonas de edad. New York: Naciones Unidas; Disponible en: https://www.un.org/sites/un2.un.org/files/old_persons_spanish.pdf
Schiffrin, E. L., Flack, J. M., Ito, S., Muntner, P., & Webb, R. C. (2020). Hypertension and COVID-19. American journal of hypertension, 33(5): 373–374. Disponible en: https://doi.org/10.1093/ajh/hpaa057
Singer, M., Deutschman, C. S., Seymour, C. W., Shankar-Hari, M., Annane, D., Bauer, M., Bellomo, R., Bernard, G. R., Chiche, J. D., Coopersmith, C. M., Hotchkiss, R. S., Levy, M. M., Marshall, J. C., Martin, G. S., Opal, S. M., Rubenfeld, G. D., van der Poll,
T., Vincent, J. L., & Angus, D. C. (2016). The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA, 315(8): 801–810. Disponible en: https://doi.org/10.1001/jama.2016.0287
Song, C., Xu, J., He, J., & Lu, Y. (2020). COVID-19 early warning score: a multi-parameter screening tool to identify highly suspected patients. medRxiv.Disponible en: https://doi.org/10.1101/2020.03.05.20031906.
Song, F., (2020). Emerging 2019 Novel Coronavirus (2019-nCoV) Pneumonia. Radiology, 295(1): 210-217. Disponible en: http://doi: 10.1148/radiol.2020209021
Szarpak, L., Ruetzler, K., Safiejko, K., Hampel, M., Pruc, M., Kanczuga-Koda, L., Filipiak, K. J., & Jaguszewski, M. J. (2020). Lactate dehydrogenase level as a COVID-19 severity marker. The American journal of emergency medicine, S0735-6757(20)31034-2. Advance online publication. Disponible en: https://doi.org/10.1016/j.ajem.2020.11.025.
Tatum, D., Taghavi, S., Houghton, A., Stover, J., Toraih, E., & Duchesne, J. (2020). Neutrophil-to-Lymphocyte Ratio and Outcomes in Louisiana COVID-19 Patients. Shock (Augusta, Ga.), 54(5): 652–658. Disponible en: https://doi.org/10.1097/SHK.0000000000001585.
Vélez, M., Velásquez Salazar, P., Acosta-Reyes, J., Vera-Giraldo, C., Franco, J. and Jiménez, C., 2020. Factores clínicos pronósticos de enfermedad grave y mortalidad en pacientes con COVID-19. [ebook] Antioquia: Unidad de Evidencia y Deliberación para la Toma de Decisiones (UNED), p.6. Disponible en: https://es.cochrane.org/sites/es.cochrane.org/files/public/uploads/COVID-19/udea-uned_sintesisrapida_covid-19_pronostico_22abril2020.pdf
Wynants, L., Van Calster, B., Collins, G. S., Riley, R. D., Heinze, G., Schuit, E., Bonten, M., Dahly, D. L., Damen, J., Debray, T., de Jong, V., De Vos, M., Dhiman, P., Haller, M. C., Harhay, M. O., Henckaerts, L., Heus, P., Kammer, M., Kreuzberger, N., Lohmann, A., …&Smeden, M. (2020). Prediction models for diagnosis and prognosis of covid-19 infection: systematic review and critical appraisal. BMJ (Clinical research ed.), 369, m1328. Disponible en: https://doi.org/10.1136/bmj.m1328
Yang, J., Zheng, Y., Gou, X., Pu, K., Chen, Z., Guo, Q., Ji, R., Wang, H., Wang, Y., & Zhou, Y. (2020). Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: a systematic review and meta-analysis. International journal of infectious diseases : IJID : official publication of the International Society for Infectious Diseases, 94: 91–95. Disponible en: https://doi.org/10.1016/j.ijid.2020.03.017
Yang, X., Yu, Y., Xu, J., Shu, H., Xia, J., Liu, H., Wu, Y., Zhang, L., Yu, Z., Fang, M., Yu, T., Wang, Y., Pan, S., Zou, X., Yuan, S., & Shang, Y. (2020). Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. The Lancet. Respiratory medicine, 8(5): 475–481. Disponible en: https://doi.org/10.1016/S2213-2600(20)30079-5
Zahorec R. (2001). Ratio of neutrophil to lymphocyte counts--rapid and simple parameter of systemic inflammation and stress in critically ill. Bratislavske lekarske listy, 102(1): 5–14.
Zhou, F., Yu, T., Du, R., Fan, G., Liu, Y., Liu, Z., Xiang, J., Wang, Y., Song, B., Gu, X., Guan, L., Wei, Y., Li, H., Wu, X., Xu, J., Tu, S., Zhang, Y., Chen, H., & Cao, B. (2020). Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet (London, England), 395(10229): 1054–1062. Disponible en: https://doi.org/10.1016/S0140-6736(20)30566-3
Zhou, Y., He, Y., Yang, H., Yu, H., Wang, T., Chen, Z., Yao, R., & Liang, Z. (2020). Development and validation a nomogram for predicting the risk of severe COVID-19: A multi-center study in Sichuan, China. PloS one, 15(5): e0233328. Disponible en: https://doi.org/10.1371/journal.pone.0233328
Zhou, Y., Yang, Z., Guo, Y., Geng, S., Gao, S., Ye, S., Hu, Y., and Wang, Y.
(2020). A New Predictor of Disease Severity in Patients with COVID-19 in Wuhan, China. medRxiv. Disponible en: https://doi.org/10.1101/2020.03.24.20042119.