La concentración de fibrinógeno se correlaciona con el control glicémico en pacientes con diabetes mellitus tipo 2

La concentración de fibrinógeno se correlaciona con el control glicémico en pacientes con diabetes mellitus tipo 2

Contenido principal del artículo

Pablo Aguirre-Villegas
Adriana Pedreáñez

Resumen

Las enfermedades cardiovasculares constituyen la principal causa de morbimortalidad en los pacientes diabéticos y la elevación en la concentración de fibrinógeno está descrita como un factor de riesgo importante. Objetivo: Determinar la concentración plasmática de fibrinógeno y su asociación con los niveles de hemoglobina glicada (HbA1c) en pacientes con DM2. Materiales y métodos: Se realizó una investigación de tipo observacional, no experimental, correlacional de corte transversal, entre noviembre del año 2023 y agosto del año 2024. Se seleccionaron 120 participantes de ambos sexos diagnosticados con DM2 que acudieron a la consulta de Medicina Interna del Hospital Provincial General Docente Riobamba, Ecuador (90 pacientes con DM2 y 30 controles). Los sujetos con diagnóstico de DM2 se dividieron en tres grupos según sus niveles de HbA1c: Grupo 1 (HbA 1c <6,5  %), Grupo 2 (≥ 6,5 % <10,0 %) y Grupo 3 (HbA1c ≥ 10,0 %). Se evaluaron los niveles glucemia, perfil lipídico y fibrinógeno plasmático Resultados: Se observaron diferencias estadísticamente significativas entre los sujetos con DM2 y los controles en cuanto a la edad, el IMC, la concentración sérica de glucosa y triacilglicéridos (p<0.05). Los pacientes con DM2 mostraron niveles plasmáticos medios de fibrinógeno superiores a los controles (P< 0,001). Se observó una correlación positiva significativa entre el fibrinógeno y la HbA1c (r=0,8380, p<0,0001). Conclusión: La correlación observada entre la concentración de fibrinógeno y los niveles de HbA1c en los sujetos con DM2 evaluados en esta investigación, conjuntamente con el incremento en la concentración de triacilglicéridos, respalda el valor de estos marcadores para la predicción temprana de las principales complicaciones observadas en la diabetes como son la disfunción vascular, el desarrollo de aterosclerosis y el consecuente daño cardiovascular.

Citas

Abdul Razak, M. K., & Sultan, A. A. (2019). The importance of measurement of plasma fibrinogen level among patients with type- 2 diabetes mellitus. Diabetes & Metabolic Syndrome, 13(2), 1151–1158. https://doi.org/10.1016/j.dsx.2019.01.049

Aguirre-Villegas, P., & Pedreañez, A. (2024). Could glycated hemoglobin be considered a marker of inflammation in patients with diabetes mellitus? International Journal of Medical and Surgical Sciences, 11(2), 1–13. https://doi.org/10.32457/ijmss.v11i2.2619

American Diabetes Association (2021). 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2021. Diabetes Care, 44(Suppl 1), S15–S33. https://doi.org/10.2337/dc21-S002.

Cerit, L. (2017). Fibrinogen and Atherosclerosis. Arquivos Brasileiros de Cardiologia, 108(2), 189–190. https://doi.org/10.5935/abc.20170017

Clauss, A. (1957). Gerinnungsphysiologische Schnellmethode zur Bestimmung des Fibrinogens [Rapid physiological coagulation method in determination of fibrinogen]. Acta Haematol, 17(4), 237-46. https://doi.org/10.1159/000205234

Daugaard, N., Bladbjerg, E. M., Maat, M. P. M., & Münster, A. B. (2024). Effect of Plasma Fibrinogen Levels on the Risk of Stroke in Patients with Type 2 Diabetes: A Systematic Review. TH Open: Companion Journal to Thrombosis and Haemostasis, 8(1), e72–e80. https://doi.org/10.1055/s-0043-1777344

de Oliveira Dos Santos, A. R., de Oliveira Zanuso, B., Miola, V. F. B., Barbalho, S. M., Santos Bueno, P. C., Flato, U. A. P., Detregiachi, C. R. P., Buchaim, D. V., Buchaim, R. L., Tofano, R. J., Mendes, C. G., Tofano, V. A. C., & Dos Santos Haber, J. F. (2021). Adipokines, Myokines, and Hepatokines: Crosstalk and Metabolic Repercussions. International Journal of Molecular Sciences, 22(5), 2639. https://doi.org/10.3390/ijms22052639

de Vries, J. J., Snoek, C. J. M., Rijken, D. C., & de Maat, M. P. M. (2020). Effects of Post-Translational Modifications of Fibrinogen on Clot Formation, Clot Structure, and Fibrinolysis: A Systematic Review. Arteriosclerosis, Thrombosis, and Vascular Biology, 40(3), 554–569. https://doi.org/10.1161/ATVBAHA.119.313626

Di Pino, A., & DeFronzo, R. A. (2019). Insulin Resistance and Atherosclerosis: Implications for Insulin-Sensitizing Agents. Endocrine Reviews, 40(6), 1447–1467. https://doi.org/10.1210/er.2018-00141

Domingueti, C. P., Dusse, L. M., Carvalho, M.d, de Sousa, L. P., Gomes, K. B., & Fernandes, A. P. (2016). Diabetes mellitus: The linkage between oxidative stress, inflammation, hypercoagulability and vascular complications. Journal of Diabetes and its Complications, 30(4), 738–745. https://doi.org/10.1016/j.jdiacomp.2015.12.018

Folsom, A. R., Wu, K. K., Rosamond, W. D., Sharrett, A. R., & Chambless, L. E. (1997). Prospective study of hemostatic factors and incidence of coronary heart disease: the Atherosclerosis Risk in Communities (ARIC) Study. Circulation, 96(4), 1102–1108.

https://doi.org/10.1161/01.cir.96.4.1102

GBD 2019 Diabetes Mortality Collaborators (2022). Diabetes mortality and trends before 25 years of age: an analysis of the Global Burden of Disease Study 2019. The Lancet. Diabetes & Endocrinology, 10(3), 177–192. https://doi.org/10.1016/S2213-8587(21)00349-1.

Gifford, J. L., Higgins, T., & Sadrzadeh, S. M. H. (2019). A high-throughput test for diabetes care: An evaluation of the next generation Roche Cobas c 513 hemoglobin A1C assay. Practical Laboratory Medicine, 17, e00147. https://doi.org/10.1016/j.plabm.2019.e00147

Hamidullah, Ahmad, I., Ashraf, Ali, M., Hussain, M., & Zakirullah (2024). Correlation between plasma fibrinogen levels and microvascular complications in type 2 diabetes. JPMA. The Journal of the Pakistan Medical Association, 74(8), 1441–1448. https://doi.org/10.47391/JPMA.10403

Henning R. J. (2018). Type-2 diabetes mellitus and cardiovascular disease. Future Cardiology, 14(6), 491–509. https://doi.org/10.2217/fca-2018-0045

Kane, J. P., Pullinger, C. R., Goldfine, I. D., & Malloy, M. J. (2021). Dyslipidemia and diabetes mellitus: Role of lipoprotein species and interrelated pathways of lipid metabolism in diabetes mellitus. Current Opinion in Pharmacology, 61, 21–27. https://doi.org/10.1016/j.coph.2021.08.013

Karim, F., Akter, Q. S., Khanom, A., Haque, S., & Rashid, M. S. (2022). Estimation of Serum Fibrinogen in Males with Type 2 Diabetes. Mymensingh Medical Journal: MMJ, 31(2), 395–399. https://pubmed.ncbi.nlm.nih.gov/35383756/

Khanam, A., Alouffi, S., Alyahyawi, A. R., Husain, A., Khan, S., Alharazi, T., Akasha, R., Khan, H., Shahab, U., & Ahmad, S. (2024). Generation of autoantibodies against glycated fibrinogen: Role in diabetic nephropathy and retinopathy. Analytical Biochemistry, 685, 115393. https://doi.org/10.1016/j.ab.2023.115393

Kotbi, S., Mjabber, A., Chadli, A., El Hammiri, A., El Aziz, S., Oukkache, B., Mifdal, H., Nourichafi, N., Kamal, N., Habbal, R., Ghalim, N., Farouqi, A., & Kabine, M. (2016). Correlation between the plasma fibrinogen concentration and coronary heart disease severity in Moroccan patients with type 2 diabetes. Prospective Study. Annales d’Endocrinologie, 77(5), 606–614. https://doi.org/10.1016/j.ando.2015.02.004

Liberale, L., Badimon, L., Montecucco, F., Lüscher, T. F., Libby, P., & Camici, G. G. (2022). Inflammation, Aging, and Cardiovascular Disease: JACC Review Topic of the Week. Journal of the American College of Cardiology, 79(8), 837–847. https://doi.org/10.1016/j.jacc.2021.12.017

Litvinov, R. I., Pieters, M., de Lange-Loots, Z., & Weisel, J. W. (2021). Fibrinogen and Fibrin. Sub-cellular Biochemistry, 96, 471–501. https://doi.org/10.1007/978-3-030-58971-4_15

Lominadze, D., Dean, W. L., Tyagi, S. C., & Roberts, A. M. (2010). Mechanisms of fibrinogen-induced microvascular dysfunction during cardiovascular disease. Acta Physiologica (Oxford, England), 198(1), 1–13. https://doi.org/10.1111/j.1748-1716.2009.02037.x

Luyendyk, J. P., Schoenecker, J. G., & Flick, M. J. (2019). The multifaceted role of fibrinogen in tissue injury and inflammation. Blood, 133(6), 511–520. https://doi.org/10.1182/blood-2018-07-818211

Mitsios, J. P., Ekinci, E. I., Mitsios, G. P., Churilov, L., & Thijs, V. (2018). Relationship Between Glycated Hemoglobin and Stroke Risk: A Systematic Review and MetaAnalysis. Journal of the American Heart Association, 7(11), e007858. https://doi.org/10.1161/JAHA.117.007858

Pedreanez, A., Mosquera, J., Munoz, N., Robalino, J., Tene, D. (2022). Diabetes, heart damage, and angiotensin II. What is the relationship link between them? A minireview. Endocr Regul., 56(1):55-65. https://doi.org/10.2478/enr-2022-0007.

Perween, S., Abidi, M., Faizy, A. F., & Moinuddin (2019). Post-translational modifications on glycated plasma fibrinogen: A physicochemical insight. International Journal of Biological Macromolecules, 126, 1201–1212. https://doi.org/10.1016/j.ijbiomac.2019.01.018

Pieters, M., van Zyl, D. G., Rheeder, P., Jerling, J. C., Loots, duT., van der Westhuizen, F. H., Gottsche, L. T., & Weisel, J. W. (2007). Glycation of fibrinogen in uncontrolled diabetic patients and the effects of glycaemic control on fibrinogen glycation. Thrombosis Research, 120(3), 439–446. https://doi.org/10.1016/j.thromres.2006.10.016

Robinson, P. W., Jury, D. R., & Langdon, A. G. (1991). The relative clotting activity of glycated and non-glycated forms of fibrinogen. Annals of Clinical Biochemistry, 28 (Pt 6), 618–619. https://doi.org/10.1177/000456329102800613

Rohm, T. V., Meier, D. T., Olefsky, J. M., & Donath, M. Y. (2022). Inflammation in obesity, diabetes, and related disorders. Immunity, 55(1), 31–55. https://doi.org/10.1016/j.immuni.2021.12.013

Saito, I., Folsom, A. R., Brancati, F. L., Duncan, B. B., Chambless, L. E., & McGovern, P. G. (2000). Nontraditional risk factors for coronary heart disease incidence among persons with diabetes: the Atherosclerosis Risk in Communities (ARIC) Study. Annals of Internal Medicine, 133(2), 81–91. https://doi.org/10.7326/0003-4819-133-2-200007180-00007

Shrestha, B., & Dunn, L. (2020). The Declaration of Helsinki on Medical Research involving Human Subjects: A Review of Seventh Revision. Journal of Nepal Health Research Council, 17(4), 548–552. https://doi.org/10.33314/jnhrc.v17i4.1042.

Singh, V. P., Bali, A., Singh, N., & Jaggi, A. S. (2014). Advanced glycation end products and diabetic complications. The Korean Journal of Physiology & Pharmacology: Official Journal of the Korean Physiological Society and the Korean Society of Pharmacology, 18(1), 1–14. https://doi.org/10.4196/kjpp.2014.18.1.1

Sulimai, N. H., Brown, J., & Lominadze, D. (2022). Fibrinogen, Fibrinogen-like 1 and Fibrinogen-like 2 Proteins, and Their Effects. Biomedicines, 10(7), 1712. https://doi.org/10.3390/biomedicines10071712

Sulimai, N., & Lominadze, D. (2021). Fibrinogen and/or Fibrin as a Cause of Neuroinflammation. Online Journal of Neurology and Brain Disorders, 5(4), 217.

Ten Cate, H., & Meade, T. (2014). The Northwick Park Heart Study: evidence from the laboratory. Journal of Thrombosis and Haemostasis: JTH, 12(5), 587–592. https://doi.org/10.1111/jth.12545

Tene, D., Urdaneta, G., Robalino, J., & Pedreañez, A. (2021). Nitric oxide and fibrinogen in patients with subclinical hypothyroidism and their possible relation to cardiovascular damage. International Journal of Medical and Surgical Sciences, 8(4), 1–12. https://doi.org/10.32457/ijmss.v8i4.1735

Thygesen, L. C., & Ersbøll, A. K. (2014). When the entire population is the sample: strengths and limitations in register-based epidemiology. European Journal of Epidemiology, 29(8), 551–558. https://doi.org/10.1007/s10654-013-9873-0

Viigimaa, M., Sachinidis, A., Toumpourleka, M., Koutsampasopoulos, K., Alliksoo, S., & Titma, T. (2020). Macrovascular Complications of Type 2 Diabetes Mellitus. Current Vascular Pharmacology, 18(2), 110–116. https://doi.org/10.2174/1570161117666190405165151

Wan, Z., Guo, J., Pan, A., Chen, C., Liu, L., & Liu, G. (2021). Association of Serum 25-Hydroxyvitamin D Concentrations With All-Cause and Cause-Specific Mortality Among Individuals With Diabetes. Diabetes Care, 44(2), 350–357. https://doi.org/10.2337/dc20-1485

Wang, P., Yuan, D., Zhang, C., Zhu, P., Jia, S., Song, Y., Tang, X., Xu, J., Li, T., Zeng, G., Zhao, X., Yang, Y., Xu, B., Gao, R., & Yuan, J. (2022). High fibrinogen-to-albumin ratio with type 2 diabetes mellitus is associated with poor prognosis in patients undergoing percutaneous coronary intervention: 5-year findings from a large cohort. Cardiovascular Diabetology, 21(1), 46. https://doi.org/10.1186/s12933-022-01477-w

Wolberg A. S. (2023). Fibrinogen and fibrin: synthesis, structure, and function in health and disease. Journal of Thrombosis and Haemostasis: JTH, 21(11), 3005–3015. https://doi.org/10.1016/j.jtha.2023.08.014

Wong, N. D., & Sattar, N. (2023). Cardiovascular risk in diabetes mellitus: epidemiology, assessment and prevention. Nature Reviews. Cardiology, 20(10), 685–695. https://doi.org/10.1038/s41569-023-00877-z

Ząbczyk, M., Ariëns, R. A. S., & Undas, A. (2023). Fibrin clot properties in cardiovascular disease: from basic mechanisms to clinical practice. Cardiovascular Research, 119(1), 94–111. https://doi.org/10.1093/cvr/cvad017