miRNAs in the Odontogenesis Process
Main Article Content
Abstract
MicroRNAs (miRNAs) are a class of small RNA molecules noncoding to proteins, which regulate gene expression at post-transcriptional level by binding to specific sequences within target genes. miRNAs have been recognized as important regulatory factors in the body development and expression of certain diseases. Some miRNAs regulate the proliferation and differentiation of cells and tissues during odontogenesis.
References
Ambros, V. The functions of animal microRNAs. Nature, 431(7006):350–5, 2004.
Aravin, A. A.; Lagos-Quintana, M.; Yalcin, A.; Zavolan, M.; Marks, D.; Snyder, B.; Gaasterland, T.; Meyer, J. & Tuschl, T. The small RNA profile during Drosophila melanogaster development. Dev. Cell, 5(2):337-50, 2003.
Bartel, D. P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116(2):281– 97, 2004.
Bartel, D. P. MicroRNAs: target recognition and regulatory functions. Cell, 136(2):215-33, 2009.
Bernstein, E.; Caudy, A. A.; Hammond, S. M. & Hannon, G. J. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature, 409(6818):363-6,2001.
Cai, X.; Hagedorn, C. H. & Cullen, B. R. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA, 10(12):1957-66,2004.
Cao, H.; Wang, J.; Li, X.; Florez, S.; Huang, Z.; Venugopalan, S.R.; Elangovan, S.; Skobe, Z.; Margolis, H. C.; Martin, J. F. & Amendt, B. A. MicroRNAs play a critical role in tooth development. J. Dent. Res., 89(8):779-84, 2010.
Chatterjee, S. & Boaz, K. Molecular biology of odontogenesis. J. Orofac. Sci., 3(1):57-61, 2011.
Chendrimada, T. P.; Gregory, R. I.; Kumaraswamy, E.; Norman, J.; Cooch, N.; Nishikura, K. & Shiekhattar, R. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature, 436(7051):740- 4, 2005.
Denli, A. M.; Tops, B. B. J.; Plasterk, R. H. A.; Ketting, R. F. & Hannon, G. J. Processing of primary microRNAs by the Microprocessor complex. Nature, 432(7014):231-5, 2004.
Dogini, D. B.; Pascoal, V. D.; Avansini, S. H.; Vieira, A. S.; Pereira, T. C. & Lopes-Cendes, I. The new world of RNAs. Genet. Mol. Biol., 37(1 Suppl.):285-93, 2014.
Du, Z.; Lee, J. K.; Tjhen, R.; Stroud, R. M. & James, T. L. Structural and biochemical insights into the dicing mechanism of mouse Dicer: a conserved lysine is critical for dsRNA cleavage. Proc. Natl. Acad. Sci. USA, 105(7):2391-6, 2008.
Filipowicz, W.; Bhattacharyya, S. N. & Sonenberg, N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat. Rev. Genet., 9(2):102-14, 2008.
Gao, F. B. Context-dependent functions of specific microRNAs in neuronal development. Neural Dev., 5:25, 2010.
Griffiths-Jones, S. The microRNA registry. Nucleid Acid Res.,1(32):D109-11, 2004.
Grishok, A.; Pasquinelli, A. E.; Conte, D.; Li, N.; Parrish, S.; Ha, I.; Baillie, D. L.; Fire, A.; Ruvkun, G. & Mello, C. C. Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C-elegans developmental timing. Cell, 106(1):23-34, 2001.
Hutvágner, G.; McLachlan, J.; Pasquinelli, A. E.; Bálint, E.; Tuschl, T. & Zamore, P. D. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science, 293(5531):834-8, 2001.
Inui, M.; Martello, G. & Piccolo, S. MicroRNA control of signal transduction. Nat. Rev. Mol. Cell Biol., 11(4):252-63, 2010.
Jevnaker, A. M. & Osmundsen, H. MicroRNA expression profiling of the developing murine molar tooth germ and the developing murine submandibular salivary gland. Arch. Oral Biol., 53(7):629-45, 2008.
Khvorova, A.; Reynolds, A. & Jayasena, S. D. Functional siRNAs and rniRNAs exhibit strand bias. Cell, 115(2):209-16, 2003.
Kim, W.; Benhamed, M.; Servet, C.; Latrasse, D.; Zhang, W.; Delarue, M. & Zhou, D. X. Histone acetyltransferase GCN5 interferes with the miRNA pathway in Arabidopsis. Cell Res.,19(7):899–909, 2009.
Kim, E. J.; Lee, M. J.; Li, L.; Yoon, K. S.; Kim, K. S. & Jung, H. S. Failure of tooth formation mediated by mir-135a overexpression via BMP signaling. J. Dent. Res., 93(6):571-5, 2014.
Martello, G.; Zacchigna, L.; Inui, M.; Montagner, M.; Adorno, M.; Mamidi, A.; Morsut, L.; Soligo, S.; Tran, U.; Dupont, S.; Cordenonsi, M.; Wessely, O. & Piccolo, S. MicroRNA control of Nodal signalling. Nature, 449(7159):183–8, 2007.
Michon, F. Tooth evolution and dental defects: from genetic regulation network to micro-RNA finetuning. Birth Defects Res. A Clin. Mol. Teratol., 91(8):763-9, 2011.
Michon, F.; Tummers, M. & Kyyronen, M. Tooth morphogenesis and ameloblast differentiation are regulated by micro-RNAs. Dev. Biol., 340(2):355- 68, 2010.
Miska, E. A. How microRNAs control cell division, differentiation and death. Curr. Opin. Genet. Dev., 15(5):563–8, 2005.
Lai, E. C.; Tomancak, P.; Williams, R. W. & Rubin, G. M. Computational identification of Drosophila microRNA genes. Genome Biol., 4(7):R42, 2003.
Landin, M. A.; Shabestari, M.; Babaie, E.; Reseland, J. E. & Osmundsen, H. Gene expression profiling during murine tooth development. Front. Genet., 3:139, 2012.
Landthaler, M.; Yalcin, A. & Tuschl, T. The human DiGeorge syndrome critical region gene 8 and Its D. melanogaster homolog are required for miRNA biogenesis. Curr. Biol., 14(23):2162-7, 2004.
Lang, M. F. & Shi, Y. Dynamic roles of microRNAs in neurogenesis. Front. Neurosci., 6:71, 2012.
Lee, R. C.; Feinbaum, R. L. & Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity tol in-14. Cell, 75(5):843-54, 1993.
Lee, Y.; Kim, M.; Han, J.; Yeom, K. H.; Lee, S.; Baek, S. H. & Kim, V. N. MicroRNA genes are transcribed by RNA polymerase II. EMBO J., 23(20):4051-60, 2004.
Li, X. & Jin, P. Roles of small regulatory RNAs in determining neuronal identity. Nat. Rev. Neurosci., 11(5):329–38, 2010.
Lund, E.; Guttinger, S.; Calado, A.; Dahlberg, J. E. & Kutay, U. Nuclear export of microRNA precursors. Science, 303(5654):95-8, 2004.
Okada, C.; Yamashita, E.; Lee, S. J.; Shibata, S.; Katahira, J.; Nakagawa, A.; Yoneda, Y. & Tsukihara, T. A high-resolution structure of the pre-microRNA nuclear export machinery. Science, 326(5957):1275–9, 2009.
Park, M. G.; Kim, J. S.; Park, S. Y.; Lee, S. A.; Kim, H. J.; Kim, C. S.; Kim, J. S.; Chun, H. S.; Park, J. C. & Kim do, K. MicroRNA-27 promotes the differentiation of odontoblastic cell by targeting APC and activating Wnt/b-catenin signaling. Gene, 538(2):266-72, 2014.
Schwarz, D. S.; Hutvágner, G.; Du, T.; Xu, Z.; Aronin, N. & Zamore, P. D. Asymmetry in the assembly of the RNAi enzyme complex. Cell, 115(2):199-208, 2003.
Stefani, G. & Slack, F. J. Small non-coding RNAs in animal development. Nat. Rev. Mol. Cell Biol., 9(3):219–30, 2008.
Shi, Y. & Jin, Y. MicroRNA in cell differentiation and development. Sci. China C Life Sci., 52(3):205– 11, 2009.
Shi, Y.; Zhao, X.; Hsieh, J.; Wichterle, H.; Impey, S.; Banerjee, S.; Neveu, P. & Kosik, K.S. MicroRNA regulation of neural stem cells and neurogenesis. J. Neurosci., 30(45):14931–6, 2010.
Sohn, S. Y.; Bae, W. J.; Kim, J. J.; Yeom, K. H.; Kim, V. N. & Cho, Y. Crystal structure of human DGCR8 core. Nat. Struct. Mol. Biol., 14(9):847-53, 2007.
Song, J. J. & Joshua-Tor, L. Argonaute and RNA-- getting into the groove. Curr. Opin. Struct. Biol., 16(1):5-11, 2006.
Sun, E. & Shi, Y. MicroRNAs: Small molecules with big roles in neurodevelopment and diseases. Exp. Neurol., 268:46–53, 2014.
Wan, M.; Gao, B.; Sun, F.; Tang, Y.; Ye, L.; Fan, Y.; Klein, O. D.; Zhou, X. & Zheng, L. microRNA miR34a regulates cytodifferentiation and targets multi-signaling pathways in human dental papilla cells. PLoS One, 7(11):e50090, 2012.
Yi, R.; Qin, Y.; Macara, I. G. & Cullen, B. R. Exportin5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev., 17(24):3011- 6, 2003.
Yin, K.; Hacia, J. G.; Zhong, Z. & Paine, M. L. Genomewide analysis of miRNA and mRNA transcriptomes during amelogenesis. BMC Genomics, 15:998, 2014.
Zeng, Y. Principles of micro-RNA production and maturation. Oncogene, 25(46):6156-62, 2006.