Basic Concepts in Tumor Angiogenesis

Basic Concepts in Tumor Angiogenesis

Main Article Content

Ignacio Roa

Abstract

The transformation of normal cells into cancer encompasses a complex series of events, such as genetic disorders, aberrant cell cycles, changes in the phenotype and in cell adhesion, inhibition of apoptosis and generation of new blood vessels. This process is controlled by factors that promote and which factors inhibit it, and the balance between these factors determines their advancement, aggressiveness and prognosis. This review shows basics in the process of tumor angiogenesis.

References

Adini, A.; Kornaga, T.; Firoozbakht, F. & Benjamin, L. E. Placental growth factor is a survival factor for tumor endothelial cells and macrophages. Cancer Res., 62:2749-52, 2002.

Baeriswyl, V. & Christofori, G. The angiogenic switch in carcinogenesis. Semin. Cancer Biol., 19(5):329-37, 2009.

Batchelor, T. T.; Sorensen, A. G.; di Tomaso, E.; Zhang, W. T.; Duda, D. G.; Cohen, K. S.; Kozak, K. R.; Cahill, D. P.; Chen, P. J.; Zhu, M.; Ancukiewicz, M.; Mrugala, M. M.; Plotkin, S.; Drappatz, J.; Louis, D. N.; Ivy, P.; Scadden, D. T.; Benner, T.; Loeffler, J. S.; Wen, P. Y. & Jain, R. K. AZD2171, a pan VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell, 11:83-95, 2007.

Bergers, G. & Hanahan, O. Modes of resistance to anti-angiogenic therapy. Nat. Rev. Cancer, 8:592-603, 2008.

Bergers, G. & Benjamin, L. Tumorigenesis and the angiogenic switch. Nat. Rev. Cancer, 3:401-41, 2003.

Carmeliet, P. Angiogenesis in life, disease and medicine. Nature, 438:932-6, 2005.

Carmeliet, P. & Jain, R. K. Molecular mechanism and clinical applications of angiogenesis. Nature, 473:298-307, 2011.

Cook, K. M. & Figg, W. D. Angiogenesis Inhibitors: Current Strategies and Future Prospects. CA Cancer J. Clin., 60:222-43, 2010.

De Spiegelaere, W.; Casteleyn, C.; Van den Broeck, W.; Plendl, J.; Bahramsoltani, M.; Simoens, P.; Djonov, V. & Cornillie, P. Intussusceptive Angiogenesis: A Biologically Relevant Form of Angiogenesis. J. Vasc. Res., 49:390-404, 2012.

Dvorak, H. F. Angiogenesis: update 2005. J. Thromb. Haemost., 3:1835-42, 2005.

Eichhorn, M.; Kleespies, A.; Angele, M.; Jauch, K. & Bruns, C. Angiogenesis in cancer: molecular mechanisms, clinical impact. Langenbecks Arch. Surg., 392:371-9, 2007.

Fakhejahani, E. & Toi, M. Tumor angiogenesis: pericytes and maturation are not be ignored. J. Oncol., 2012:261750, 2012.

Fan, F.; Schimming, A.; Jaeger, D. & Podar, K. Targeting the tumor microenvironment: focus on angiogenesis. J. Oncol., 2012:281261, 2012.

Fernando, N. T.; Koch, M.; Rothrock, C.; Gollogly, L. K.; D'Amore, P. A.; Ryeom, S. & Yoon, S. S. Tumor escape from endogenous, extracellular matrix associated angiogenesis inhibitors by up regulation of multiple proangiogenic factors. Clin. Cancer Res., 14:1529-39, 2008.

Ferrara, N. Role of vascular endothelial growth factor in physiologic and pathologic angiogenesis: therapeutic implications. Semin. Oncol., 29:10- 4, 2002.

Ferrara, N.; Gerber, H. P. & LeCouter, J. The biology of VEGF and its receptors. Nat. Med., 9(6):669- 76, 2003.

Ferrara, N. & Kerbel, R. Angiogenesis as a therapeutic target. Nature, 438:967-74, 2005.

Folkman, J. Tumor angiogenesis: therapeutic implications. N. Engl. J. Med., 285:1182-6, 1971.

Folkman, J. Antiangiogenesis in cancer therapy— endostatin and its mechanisms of action. Exp. Cell Res., 312:594-607, 2006.

Gacche, R. N. & Meshram, R. J. Angiogenic factors as potential drug target: Efficacy and limitations of anti-angiogenic therapy. Biochim. Biophys Acta, 1846(1):161-79, 2014

Garrido, O.; Letelier, R.; Rosas, C.; Fuenzalida, M.; Ferreira, A. & Lemus, D. Betamethasone inhibits tumor development, microvessel density and prolongs survival in mice with a multiresistant adenocarcinoma TA3. Biol. Res., 43(3):317-22, 2010.

Gavalas, N. G.; Liontos, M.; Trachana, S. P.; Bagratuni, T.; Arapinis, C.; Liacos, C.; Dimopoulos, M. A. & Bamias, A. AngiogenesisRelated Pathways in the Pathogenesis of Ovarian Cancer. Int. J. Mol. Sci., 14:15885-909, 2013.

Ghosh, N.; Chaki, R.; Mandal, V. & Mandal, S. C. COX-2 as a target for cancer chemotherapy. Pharmalogical Rec., 62:233-44, 2010.

Goel, H. L. & Mercurio, A. M. VEGF targets the tumour cell. Nat. Rev. Cancer, 13(12):871-82, 2013.

Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell, 144(5):646-74, 2011.

Hilmi, I. & Goh, K. L. Chemoprevention of colorectal cancer with nonsteroidal anti-inflammatory drugs. Chin. J. Dig. Dis., 7:1-6, 2006.

Husain, S. S.; Szabo, I. L. & Tarnawski, A. S. NSAID

inhibition of GI cancer growth: clinical implications and molecular mechanisms of action. Am. J. Gastroenterol., 97:542-53, 2002.

Illanes, J.; Dabancens, A.; Acuña, O.; Fuenzalida, M.; Guerrero, A.; Lopez, C. & Lemus, D. Effects of betamethasone, sulindac and quinacrine drugs on the inflammatory neoangiogenesis response induced by polyurethane sponge implanted in mouse. Biol. Res., 35(3-4):339-45, 2002.

Kaplan, R. N.; Riba, R. D.; Zacharoulis, S.; Bramley, A. H.; Vincent, L.; Costa, C.; MacDonald, D. D.; Jin, D. K.; Shido, K.; Kerns, S. A.; Zhu, Z.; Hicklin, D.; Wu, Y.; Port, J. L.; Altorki, N.; Port, E. R.; Ruggero, D.; Shmelkov, S. V.; Jensen, K. K.; Rafii, S. & Lyden, D. VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature, 438:820-7, 2005.

Kerbel. Tumor Angiogenesis. N. Eng. J. Med., 358:2039-49, 2008.

Kim, S.; Ding, W.; Zhang, L.; Tian, W. & Chen, S. Clinical response to sunitinib as a multitargeted tyrosine-kinase inhibitor (TKI) in solid cancers: a review of clinical trials. Onco Targets Ther., 7:719-28, 2014.

Li, T. S.; Kaneda, Y.; Ueda, K.; Hamano, K.; Zempo, N. & Esato, K. The influence of tumour resection on angiostatin levels and tumour growth: an experimental study in tumour-bearing mice. Eur. J. Cancer, 37(17):2283-8, 2001.

Mäkinen, T.; Jussila, L.; Veikkola, T.; Karpanen, T.; Kettunen, M. I.; Pulkkanen, K. J.; Kauppinen, R.; Jackson, D. J.; Kubo, H.; Nishikawa, S.; YläHerttuala, S. & Alitalo, K. Inhibition of lymphangiogenesis with resulting lymphedema in transgenic mice expressing soluble VEGF receptor-3. Nat. Med., 7:199-205, 2001.

Masferrer, J. L.; Leahy, K. M.; Koki, A. T.; Zweifel, B. S.; Settle, S. L.; Woerner, B. M. & Edwards, D. A.; Flickinger, A. G.; Moore, R. J. & Seibert, K. Antiangiogenic and antitumor activities of cyclooxygenase-2 inhibitors. Cancer Res., 60(5):1306-11, 2000.

Matsumoto, T. & Claesson-Welsh, L. VEGF receptor signal transduction. Sci, STKE, 112(RE21):1-17, 2001.

Mittal, K.; Ebos, J. & Rini, B. Angiogenesis and the tumor microenvironment: vascular endothelial growth factor and beyond. Semin. Oncol., 41(2):235-51, 2014.

Nyberg, P.; Xie, L. & Kalluri, R. Endogenous lnhibitors of Angiogenesis. Cancer Res., 65(10):3967- 3979, 2005.

Ohta, M.; Konno, H.; Tanaka, T.; Baba, M.; Kamiya, K.; Syouji, T.; Kondoh, K.; Watanabe, M.; Terada, H. & Nakamura, S. The significance of circulating vascular endothelial growth factor (VEGF) protein in gastric cancer. Cancer Lett., 192:215-25, 2003.

Oklu, R.; Walker, T. G.; Wicky, S. & Hesketh, R. Angiogenesis and current antiangiogenic strategies for the treatment of cancer. J. Vasc. Interv. Radiol., 21(12):1791-805 2010.

Partanen, T. A. & Paavonen, K. Lymphatic versus blood vascular endothelial growth factors and receptors in humans. Microsc. Res. Tech., 55:108-21, 2001.

Rodríguez, P.; Lampurlanés-Balvoa, D.; Pérez-Pinto, C.; Roa, R. & Rivera, C. Revisión sistemática: células e inductores de angiogénesis tumoral.Rev. Med. Maule, 29(1):49, 2013.

Rosas, C. C.; Roa, I.; Sinning, O. M.; Fuenzalida, B. M. & Lemus, A. D. Efecto de celecoxib en una variante multirresistente del tumor TA3. Una descripción histológica. Int. J. Morphol., 31(2):392- 8, 2013.

Schalper, P. J.; Schalper, C. K.; Piérart, Z. C. & Piérart, P. J. Análisis de la distribución de los componentes de membrana basal laminina, fibronectina y colágeno IV en vasos sanguíneos de patología mamaria benigna y maligna. Rev. Chil. Cir., 55(3):249-55, 2003.

Shibuya, M. Structure and function of VEGF/ VEGFreceptor system involved in angiogenesis. CellStruct. Funct., 26:25-35, 2001.

Spannuth, W. A.; Sood, A. K. & Coleman, R. L. Angiogenesis as a Strategic Target for Ovarian Cancer Therapy. Nat. Clin. Pract. Oncol., 5:194- 204, 2008.

Veikkola, T.; Karkkainen, M.; Cleasson-Welsh, L. & Alitalo, K. Regulation of angiogenesis via vascular endothelial growth factor receptors. Cancer Res., 60:203-12, 2000.

Venkatesan, P.; Puvvada, N.; Dash, R.; Prashanth Kumar, B. N.; Sarkar, D.; Azab, B.; Pathak, A.; Kundu, S. C.; Fisher, P. B. & Mandal, M. The potential of celecoxib-loaded hydroxyapatitechitosan nanocomposite for the treatment of colon cancer. Biomaterials, 32(15):3794-806, 2011.

Yancopoulos, G. D.; Davis, S.; Gale, N. W.; Rudge, J. S.; Wiegand, S. J. & Holash, J. Vascular-specific growth factors and blood vessel formation. Nature, 407:242-8, 2000.

Yoo, S. Y. & Kwon, S. M. Angiogenesis and Its Therapeutic Opportunities. Mediators Inflamm., 127170:1-11, 2013.

Yokoyama, Y.; Charnock-Jones, D. S.; Licence, D.; Yanaihara, A.; Hastings, J. M.; Holland, C. M.; Emoto, M.; Sakamoto, A.; Sakamoto, T.; Maruyama, H.; Sato, S.; Mizunuma, H. & Smith, S. K. Expression of vascular endothelial growth factor (VEGF)- D and its receptor, VEGF receptor 3, as a prognostic factor in endometrial carcinoma. Clin. Cancer Res., 9:1361-9, 2003.

Zhu, Z. & Witte, L. Inhibition of tumor growth and metastasis by targeting tumor-associated angiogenesis with antagonists to the receptors of vascular endothelial growth factor. Invest. New Drugs, 17:195-212, 1999.

Zúñiga, J.; Fuenzalida, M.; Guerrero, A.; Illanes, J.; Dabancens, A.; Díaz, E. & Lemus, D. Effects of steroidal and non steroidal drugs on the neovascularization response induced by tumoral TA3 supernatant on CAM from chick embryo. Biol. Res., 36(2):233-40, 2003.