Implantation of Autologous Stem Cells Derived from Adipose Tissue in Rat Bone Fractures

Implantation of Autologous Stem Cells Derived from Adipose Tissue in Rat Bone Fractures

Main Article Content

Carolina Smok
Manuel Meruane
Mariana Rojas

Abstract

Stem cells derived from adipose tissue (ASCs) correspond to a major advance with respect to the bone regenerative medicine, as they have the ability for self-renewal, differentiation and paracrine stimulation to various types of tissues including bone and cartilage. The hypothesis of this study considers that fractures treated with ASCs, time decreases bone regeneration and vascularization increases, aiming to histologically evaluate bone regeneration and vascularization in these fractures. To accomplish this, 24 young male Sprague Dawley rats were used. The specimens were divided into two groups: Group A (treated) and group B (control). In both groups, the rats were euthanized at 11 and 21 days post-fracture. Statistically significant difference was observed in the number of newly formed trabeculae and vascular density in the treated group compared to control group concluded that rats treated with ASCs have a higher rate and better angiogenic bone regeneration, especially given the ability to synthesize components of the extracellular matrix of these cell, and the production of angiogenic growth factors.

References

Amable, P.; Telles, M.; Vieira, R.; Granjeiro, J. & Borojevic, R. Protein synthesis and secretion in human mesenchymal cells derived from bone marrow, adipose tissue and Wharton’s jelly. Stem Cell Res. Ther., 5(2):53, 2014.

Arrigoni, E.; Lopa, S.; de Girolamo, L.; Stanco, D. & Brini, A.T. Isolation, characterization and osteogenic differentiation of adipose-derived stem cells: from small to large animal models. Cell Tissue Res. 338:401-11, 2009.

Badiavas, E. V.; Abedi, M.; Butmarc J.; Falanga, V. & Quesenberry, P. Participation of bone marrow derived cells in cutaneous wound healing. J. Cell Physiol., 196:245-50, 2003.

Baer, P. & Geiger, H. Adipose-Derived Mesenchymal Stromal/StemCells: Tissue Localization, Characterization, and Heterogeneity. Stem Cells Int., 2012:812693, 2012.

Black, L. L.; Gaynor, J.; Gahring, D.; Adams, C.; Aron, D.; Harman, S.; Gingerich, D. A. & Harman, R. Effect of adipose-derived mesenchymal stem and regenerative cells on lameness in dogs with chronic osteoarthritis of the coxofemoral joints: A randomized, double-blinded, multicenter, controlled trial. Vet. Ther., 8(4):272-84, 2007.

Bruder, S. P.; Jaiswal, N. & Ricalton, N. S. Mesenchymal stem cells in osteobiology and applied bone regeneration. Clin. Orthop. Relat.Res., 355 Suppl:S247-56, 1998.

Chang, H. & Knothe, M. L. The periosteum: tapping into a reservoir of clinically useful progenitor cells. Stem Cells Transl. Med., 1:480-91, 2012.

Claes, L.; Maurer-Klein, N.; Henke, T.; Gerngross, H.; Melnyk, M. & Augat. P. Moderate soft tissue trauma delays new bone formation only in the early phase of fracture healing. J. Orthop. Res., 24:1178-85, 2006.

Claes, L.; Recknagel, S. & Ignatius, A. Fracture healing under healthy and inflammatory conditions. Nat. Rev. Rheumatol., 8(3):133-43, 2012.

Colnot, C.; Zhang, X. & Knothe, M. Current Insights on the Regenerative Potential of the Periosteum: Molecular, Cellular, and Endogenous Engineering Approaches. J. Orthop. Res., 30(12):1869-78, 2012.

Córdova, L. A. Reparación ósea mandibular con autoinjerto ilíaco: estudio celular inicial en el modelo animal Oryctolagus cuniculus. Tesis para optar al grado de Magíster en Ciencias Biológicas, mención Morfología. Facultad de Medicina. Universidad de Chile, Chile, 2010.

Day, S. M.; Ostrum, R. F.; Chao, E. Y. S.; Rubin, C. T.; Aro, H. T. & Einhorn, T. A. Bone Injury, Regeneration, and Repair. In: Buckwalter, J. A.; Einhorn, T. A. & Simon, S. R. (Eds.). Orthopaedic Basic Science. 2 ed. Rosemont, American Academy of Orthopaedic Surgeons, 2000. pp.371-99.

Del Bue, M.; Riccò, S.; Ramoni, R.; Conti, V.; Gnudi, G. & Grolli, S. Equine adipose-tissue derived mesenchymal stem cells and platelet concentrates: their association in vitro and in vivo. Vet. Res. Commun., 32(1):51-5, 2008.

Einhorn, T. A. The cell and molecular biology of fracture healing. Clin. Orthop. Relat. Res., 355(Suppl.):S7–21, 1998.

Epari, D. R.; Taylor, W. R.; Heller, M. O. & Duda, G. N. Mechanical conditions in the initial phase of bone healing. Clin. Biomech., 21:646-55, 2006.

Ferguson, C.; Alpern, E.; Miclau, T. & Helms, J. A. Does adult fracture repair recapitulate embryonic skeletal formation? Mech. Dev., 87:57-66, 1999.

Fernández-Tresguerres Hernández-Gil, I.; Alobera Gracia, M. A.; del Canto Pingarrón, M. & Blanco Jerez, L. Physiological bases of bone regeneration I. Histology and physiology of bone tissue. Med. Oral Patol. Oral Cir. Bucal, 11:47-51, 2006.

Frost, H. M. The biology of fracture healing - An overview for clinicians. Part I. Clin. Orthop. Relat. Res., (248):283-93, 1989.

Gaiba, S.; Pereira de França, L.; Pereira de França, J. & Masako, L. Characterization of human adiposederived stem cells. Acta Cir. Bras., 27(7):471-6, 2012.

Gimble, J. M.; Katz, A. J. & Bunnell, B. A. Adiposederived stem cells for regenerative medicine. Circ. Res., 100(9):1249-60, 2007.

Herthel, D. J. Enhanced suspensory ligament healing in 100 horses by stem cell and other bone marrow components. AAEP Proceedings, 47:319-21, 2001.

Ito, R.; Matsumiya, T.; Kon, T.; Narita, N.; Kubota, K.; Sakaki, H.; Ozaki, T.; Imaizumi, T.; Kobayashi, W. & Kimura, H. Periosteum-derived cells respond to mechanical stretch and activate Wnt and BMP signaling pathways. Biomed Res., 35(1):69-79, 2014.

Knight, M. & Hankenson, K. Mesenchymal Stem Cells in Bone Regeneration. Adv. Wound Care, 2(6):306-16, 2013.

Kon, E.; Muraglia, A.; Corsi, A.; Bianco, P.; Maracci, M.; Martin, I.; Boyde, A.; Ruspantini, I.; Chistolini, P.; Rocca, M.; Giardino, R.; Cancedda, R. & Quarto, R. Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repair in critical-size defects of sheep long bones. J. Biomed. Mater. Res., 49:328-37, 2000. Kou, L.; Lu, K.; Wu, M.; Wang, H.; Zhang, Y.; Sato,

S. & Shen, J. The phenotype and tissue-specific nature of multipotent cells derived from human mature adipocytes. Biochem. Biophys. Res. Commun., 444:543-8, 2014.

Litzke, L. E.; Wagner, E.; Baumgaertner, W.; Hetzel, U.; Josimovic-Alasevic, O. & Libera, J. Repair of extensive articular cartilage defects in horses by autologous chondrocyte transplantation. Ann. Biomed. Eng., 32:57-69, 2004.

Lu, F.; Mizuno, H.; Uysal, C. A.; Cai, X.; Ogawa, R. & Hyakusoku, H. Improved viability of random pattern skin flaps through the use of adiposederived stem cells. Plast. Reconstr. Surg., 121:50- 8, 2008.

Maredziak, M.; Marycz, K.; Smieszek, A.; Lewandowski, D. & Toker, N. The influence of static magnetic fields on canine and equine mesenchymal stem cells derived from adipose tissue. In Vitro Cell Dev. Biol. Anim., 50(6):562- 71, 2014.

McKibbin, B. Biology of fracture healing in long bones. J. Bone Joint Surg. Brit., 60:150-62, 1978.

Meruane, M. & Rojas, M. Células Troncales Derivadas el Tejido Adiposo. Int. J. Morphol., 28(3):879- 89, 2010.

Mizumo, H. Adipose-derived stem cells for tissue repair and regeneration: ten years of research and literature review. J. Nippon Med. Sch., 76(2):56-66, 2009.

Morton, D.B. & Griffiths, P. H. Guidelines on the recognition of pain, distress and discomfort in experimental animals and an hypothesis for assessment. Vet. Rec., 116:431-6, 1985.

Nakahara, H.; Bruder, S. P.; Haynesworth, S. E.; Holecek, J. J.; Baber, M. A.; Goldberg, V. M. & Caplan, A. I. Bone and cartilage formation in diffusion chambers by subcultured cells derived from the periosteum. Bone, 11:181-8, 1990.

Puissant, B.; Barreau, C.; Bourin, P.; Clavel, C.; Corre, J.; Bousquet, C.; Taureau, C.; Cousin, B.; Abbal, M.; Laharrague, P.; Penicaud, L.; Casteilla, L. & Blancher, A. Inmunomodulatory effect of human adipose tissue-derived adult stem cells: comparison with bone marrow mesenchymal stem cells. Br. J. Hematol., 129:118-29, 2005.

Rehman, J.; Traktuev, D.; Li, J.; Merfeld-Clauss, S.; Temm-Grove, C. J.; Bovenkerk, J. E.; Pell, C. L.; Johnstone, B. H.; Considine, R. V. & March, K. L. Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation, 109:1292-8, 2004.

Rojas, M. & Meruane, M. Potencialidad celular evolutiva y medicina regenerativa. Int. J. Morphol., 30(4):1243-51, 2012.

Russell, W. M. S. & Burch, R. l. The Principles of Humane Experimental Technique. London, Methuen, 1959.

Shapiro, F. Bone development and its relation to fracture repair. The role of mesenchymal osteoblasts and surface osteoblasts. Europ. Cells Mater., 15:53-76, 2008.

Shoji, T.; Li, M.; Mifune, Y.; Matsumoto, T.; Kawamoto, A.; Kwon, S.; Kuroda, T.; Kuroda, R.; Kurosaka, M. & Asahara, T. Local transplantation of human multipotent adiposederived stem cells accelerates fracture healing via enhanced osteogenesis and angiogenesis. Lab. Invest., 90:637-49, 2010.

Smith, R. K. W.; Korada, M.; Blunn, G. W. & Goodship, A. E. Isolation and implantation of autologous equine mesenchymal stem cells from bone marrow into superficial digital flexor tendon as a potential novel treatment. Equine Vet. J., 35(1):99-102, 2003.

Soung, D.; Talebian, L.; Matheny, C.; Guzzo, R.; Speck, M.; Lieberman, J.; Speck, N. & Drissi, H. Runx1 dose-dependently regulates endochondral ossification during skeletal development and fracture healing. J. Bone Miner. Res., 27(7):1585- 97, 2012.

Taghi, M. B.; Kashani, H. G.; Taghi, L.; Leili, H. & Leyla, M. Characterization of in vitro cultured bone marrow and adipose tissue-derived mesenchymal stem cells and their ability to express neurotrophic factors. Cell Biol. Int., 36(12):1239-49, 2012.

Uccelli, A.; Pistoia, V. & Moretta, L. Mesenchymal stem cells: a new strategy for immunosuppression? Trends Immunol., 28(5):220-6, 2007.

Utvag, S. E.; Grundnes, O.; Rindal, D. B. & Reikeras, O. Influence of extensive muscle injury on fracture healing in rat tibia. J. Orthop. Trauma, 17:430-5, 2003.

Vortkamp, A.; Pathi, S.; Peretti, G. M.; Caruso, E. M.; Zaleske, D. J. & Tabin, C. J. Recapitulation of signals regulating embryonic bone formation during postnatal growth and in fracture repair. Mech. Dev., 71:65-76, 1998.

Wang, M.; Crisostomo, P.; Herring, C.; Meldrum, K. & Meldrum, D. Human progenitor cells from bone marrow or adipose tissue produce VEGF, HGF, and IGF-I in response to TNF by a p38 MAPKdependent mechanism. AJP Regul. Interg. Comp. Physiol., 291:880-3, 2006.

Weatherholt, A.; Fuchs, R. & Warden, S. Cortical and trabecular bone adaptation to incremental load magnitudes using the mouse tibial axial compression loading model. Bone, 52:372-9, 2013.

Zuk, P. A.; Zhu, M.; Mizumo, H.; Huang, J.; Futrell, J. W.; Katz, A. J.; Benhaim, P.; Lorenz, H. P. & Hedrick, M. H. Multilineage cells from human adipose tissue implications for cell-based therapies. Tissue Eng., 7:211-8, 2001.