Could glycated hemoglobin be considered a marker of inflammation in patients with diabetes mellitus?
Main Article Content
Abstract
La fisiopatología de la diabetes incluye la persistencia de un estado inflamatorio de bajo grado caracterizado por el incremento de citocinas proinflamatorias, proteínas de fase aguda y alteraciones en la respuesta inmunitaria que conllevan al desarrollo de complicaciones macrovasculares y microvasculares. Los mecanismos involucrados en la activación del estado inflamatorio no están totalmente esclarecidos, pero se sabe que la hiperglucemia juega un rol determinante. La hemoglobina glicada es en la actualidad el marcador biológico por excelencia utilizado para evaluar la evolución de los niveles de glucemia en los pacientes diabéticos debido a su formación irreversible y acumulativa, proporcionando información retrospectiva sobre el equilibrio glucémico durante dos a tres meses anteriores a su medición. Sin embargo, poco se conoce sobre su asociación con la respuesta inflamatoria en estos pacientes. El objetivo de esta investigación es recopilar evidencias que permitan establecer una asociación entre los niveles de HbA1c y el estado inflamatorio en pacientes con diabetes mellitus, lo que permitiría considerar a la HbA1c no sólo como una medida fiable para evaluar el control glucémico retrospectivo. Sino además, como un biomarcador asociado al estado inflamatorio y por consiguiente al riesgo de desarrollar complicaciones propias de esta enfermedad.
References
Acharya, A. S., Roy, R. P., & Dorai, B. (1991). Aldimine to ketoamine isomerization (Amadori rearrangement) potential at the individual nonenzymic glycation sites of hemoglobin A: preferential inhibition of glycation by nucleophiles at sites of low isomerization potential. Journal of protein chemistry, 10(3), 345–358. https://doi.org/10.1007/BF01025633
Adane, T., Melku, M., Worku, Y. B., Fasil, A., Aynalem, M., Kelem, A., & Getawa, S. (2023). The Association between Neutrophil-to-Lymphocyte Ratio and Glycemic Control in Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis. Journal of diabetes research, 2023, 3117396. https://doi.org/10.1155/2023/3117396
Alqahtani S. A. M. (2023). Lipid profiles and their relation to glycemic control in Saudi Arabia: The role of altitudes and environmental factor. Journal of family medicine and primary care, 12(7), 1352–1360. https://doi.org/10.4103/jfmpc.jfmpc_104_23
American Diabetes Association (2021). 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2021. Diabetes care, 44(Suppl 1), S15–S33. https://doi.org/10.2337/dc21-S002.
American Diabetes Association; Diagnosis and Classification of Diabetes Mellitus. Diabetes Care 1 January 2010; 33 (Supplement_1): S62–S69. https://doi.org/10.2337/dc10-S062
Atef Abdelsattar Ibrahim, H., Kaddah, S., Elkhateeb, S. M., Aboalazayem, A., Amin, A. A., & Marei, M. M. (2023). Glucose indices as inflammatory markers in children with acute surgical abdomen: a cross-sectional study. Annals of medicine, 55(2), 2248454. https://doi.org/10.1080/07853890.2023.2248454
Banarjee, R., Sharma, A., Bai, S., Deshmukh, A., & Kulkarni, M. (2018). Proteomic study of endothelial dysfunction induced by AGEs and its possible role in diabetic cardiovascular complications. Journal of proteomics, 187, 69–79. https://doi.org/10.1016/j.jprot.2018.06.009
Banting, F. G., & Best, C. H. (2007). The internal secretion of the pancreas. 1922. The Indian journal of medical research, 125(3), 251–266
Berbudi, A., Rahmadika, N., Tjahjadi, A. I., & Ruslami, R. (2020). Type 2 Diabetes and its Impact on the Immune System. Current diabetes reviews, 16(5), 442–449. https://doi.org/10.2174/1573399815666191024085838
Bommer, C., Sagalova, V., Heesemann, E., Manne-Goehler, J., Atun, R., Bärnighausen, T., Davies, J., & Vollmer, S. (2018). Global Economic Burden of Diabetes in Adults: Projections From 2015 to 2030. Diabetes care, 41(5), 963–970. https://doi.org/10.2337/dc17-1962
Chakraborty, S., Verma, A., Garg, R., Singh, J., & Verma, H. (2023). Cardiometabolic Risk Factors Associated With Type 2 Diabetes Mellitus: A Mechanistic Insight. Clinical medicine insights. Endocrinology and diabetes, 16, 11795514231220780. https://doi.org/10.1177/11795514231220780
Chalew, S. A., McCarter, R. J., & Hempe, J. M. (2013). Biological variation and hemoglobin A1c: relevance to diabetes management and complications. Pediatric diabetes, 14(6), 391–398. https://doi.org/10.1111/pedi.12055
Chen, J., Yi, Q., Wang, Y., Wang, J., Yu, H., Zhang, J., Hu, M., Xu, J., Wu, Z., Hou, L., Zhang, Z., Zhang, Y., Wang, Y., Tu, Z., Yang, K., Guo, K., Zhou, Y., Geng, T., Pan, X., Liu, G., … Pan, A. (2022). Long-term glycemic variability and risk of adverse health outcomes in patients with diabetes: A systematic review and meta-analysis of cohort studies. Diabetes research and clinical practice, 192, 110085. https://doi.org/10.1016/j.diabres.2022.110085
Cheng, W., Huang, R., Pu, Y., Li, T., Bao, X., Chen, J., Li, G., Wu, H., & Wei, Z. (2024). Association between the haemoglobin glycation index (HGI) and clinical outcomes in patients with acute decompensated heart failure. Annals of medicine, 56(1), 2330615. https://doi.org/10.1080/07853890.2024.2330615
Cole, J. B., & Florez, J. C. (2020). Genetics of diabetes mellitus and diabetes complications. Nature reviews. Nephrology, 16(7), 377–390. https://doi.org/10.1038/s41581-020-0278-5
D’Alessandro, A., Mirasole, C., & Zolla, L. (2013). Haemoglobin glycation (Hb1Ac) increases during red blood cell storage: a MALDI-TOF mass-spectrometry-based investigation. Vox sanguinis, 105(2), 177–180. https://doi.org/10.1111/vox.12029
Dayama, N., Yadav, S. K., Saxena, P., Sharma, A., Kashnia, R., & Sharda, K. (2024). A Study of Relationships between the HbA1c Level and Inflammatory Markers, Neutrophil-to-Lymphocyte Ratio, and Monocyte-to-Lymphocyte Ratio in Controlled and Uncontrolled Type 2 Diabetes Mellitus. The Journal of the Association of Physicians of India, 72(3), 24–26. https://doi.org/10.59556/japi.72.0427
Demir, S., Nawroth, P. P., Herzig, S., & Ekim Üstünel, B. (2021). Emerging Targets in Type 2 Diabetes and Diabetic Complications. Advanced science (Weinheim, Baden-Wurttemberg, Germany), 8(18), e2100275. https://doi.org/10.1002/advs.202100275
Demirkol, M. E., Alisik, M., & Yis, O. M. (2022). C-Reactive Protein to Albumin Ratio in Patients with Prediabetes and Diabetes Mellitus: HbA1c and Inflammation. Clinical laboratory, 68(8), https://doi.org/10.7754/Clin.Lab.2021.211108
Farah, R., Shurtz-Swirski, R., & Lapin, O. (2008). Intensification of oxidative stress and inflammation in type 2 diabetes despite antihyperglycemic treatment. Cardiovascular diabetology, 7, 20. https://doi.org/10.1186/1475-2840-7-20
Gabbay K. H. (1976). Editorial: Glycosylated hemoglobin and diabetic control. The New England journal of medicine, 295(8), 443–444. https://doi.org/10.1056/NEJM197608192950810
Gillery P. (2015). New trends in the long and puzzling history of HbA1c. Clinical chemistry and laboratory medicine, 53(9), 1297–1299. https://doi.org/10.1515/cclm-2015-0413
González, I., Morales, M. A., & Rojas, A. (2020). Polyphenols and AGEs/RAGE axis. Trends and challenges. Food research international (Ottawa, Ont.), 129, 108843. https://doi.org/10.1016/j.foodres.2019.108843
Gustavsson, C. G., & Agardh, C. D. (2004). Markers of inflammation in patients with coronary artery disease are also associated with glycosylated haemoglobin A1c within the normal range. European heart journal, 25(23), 2120–2124. https://doi.org/10.1016/j.ehj.2004.09.008
Jiang, H., Yan, W. H., Li, C. J., Wang, A. P., Dou, J. T., & Mu, Y. M. (2014). Elevated white blood cell count is associated with higher risk of glucose metabolism disorders in middle-aged and elderly Chinese people. International journal of environmental research and public health, 11(5), 5497– 5509. https://doi.org/10.3390/ijerph110505497
Julián, M. T., Pérez-Montes de Oca, A., Julve, J., & Alonso, N. (2024). The double burden: type 1 diabetes and heart failure-a comprehensive review. Cardiovascular diabetology, 23(1), 65. https://doi.org/10.1186/s12933-024-02136-y
Khan, H. A., Ola, M. S., Alhomida, A. S., Sobki, S. H., & Khan, S. A. (2014). Evaluation of HbA1c criteria for diagnosis of diabetes mellitus: a retrospective study of 12 785 type 2 Saudi male patients. Endocrine research, 39(2), 61–65. https://doi.org/10.3109/07435800.2013.828740
Khan, H. A., Sobki, S. H., & Khan, S. A. (2007). Association between glycaemic control and serum lipids profile in type 2 diabetic patients: HbA1c predicts dyslipidaemia. Clinical and experimental medicine, 7(1), 24–29. https://doi.org/10.1007/s10238-007-0121-3
Khan, M. I., Ashfaq, F., Alsayegh, A. A., Hamouda, A., Khatoon, F., Altamimi, T. N., Alhodieb, F. S., & Beg, M. M. A. (2023). Advanced glycation end product signaling and metabolic complications: Dietary approach. World journal of diabetes, 14(7), 995–1012. https://doi.org/10.4239/wjd.v14.i7.995
Koenig, R. J., Araujo, D. C., & Cerami, A. (1976). Increased hemoglobin AIc in diabetic mice. Diabetes, 25(1), 1–5. https://doi.org/10.2337/diab.25.1.1
Koenig, R. J., Peterson, C. M., Jones, R. L., Saudek, C., Lehrman, M., & Cerami, A. (1976). Correlation of glucose regulation and hemoglobin AIc in diabetes mellitus. The New England journal of medicine, 295(8), 417–420. https://doi.org/10.1056/NEJM197608192950804
Kompoti, M., Michalia, M., Salma, V., Diogou, E., Lakoumenta, A., & Clouva-Molyvdas, P. M. (2015). Glycated hemoglobin at admission in the intensive care unit: clinical implications and prognostic relevance. Journal of critical care, 30(1), 150–155. https://doi.org/10.1016/j.jcrc.2014.08.014
Luo, Y., Li, S., & Ho, C. T. (2021). Key Aspects of Amadori Rearrangement Products as Future Food Additives. Molecules (Basel, Switzerland), 26(14), 4314. https://doi.org/10.3390/molecules26144314
Mitsios, J. P., Ekinci, E. I., Mitsios, G. P., Churilov, L., & Thijs, V. (2018). Relationship Between Glycated Hemoglobin and Stroke Risk: A Systematic Review and Meta-Analysis. Journal of the American Heart Association, 7(11), e007858. https://doi.org/10.1161/JAHA.117.007858
Mukherjee, S., Yadav, P., Ray, S. K., Jadhav, A. A., & Wakode, S. L. (2024). Clinical Risk Assessment and Comparison of Bias between Laboratory Methods for Estimation of HbA1c for Glycated Hemoglobin in Hyperglycemic Patients. Current diabetes reviews, 20(7), e261023222764. https://doi.org/10.2174/0115733998257140231011102518
Nathan D. M. (1993). Long-term complications of diabetes mellitus. The New England journal of medicine, 328(23), 1676–1685. https://doi.org/10.1056/NEJM199306103282306
Nathan, D. M., & DCCT/EDIC Research Group (2014). The diabetes control and complications trial/epidemiology of diabetes interventions and complications study at 30 years: overview. Diabetes care, 37(1), 9–16. https://doi.org/10.2337/dc13-2112
Prasad K. (2018). Does HbA1cc Play a Role in the Development of Cardiovascular Diseases?. Current pharmaceutical design, 24(24), 2876–2882. https://doi.org/10.2174/1381612824666180903121957
Rahbar, S., Blumenfeld, O., & Ranney, H. M. (1969). Studies of an unusual hemoglobin in patients with diabetes mellitus. Biochemical and biophysical research communications, 36(5), 838–843. https://doi.org/10.1016/0006-291x(69)90685-8
Rohm, T. V., Meier, D. T., Olefsky, J. M., & Donath, M. Y. (2022). Inflammation in obesity, diabetes, and related disorders. Immunity, 55(1), 31–55. https://doi.org/10.1016/j.immuni.2021.12.013
Sari, M. I., Tala, Z. Z., & Wahyuni, D. D. (2019). Association between Glycated Hemoglobin with the Levels of Serum Proinflammatory Cytokines and Antioxidants in Patients with Type 2 Diabetes Mellitus in Universitas Sumatera Utara Hospital. Open access Macedonian journal of medical sciences, 7(5), 715–720. https://doi.org/10.3889/oamjms.2019.168
Sartore, G., Ragazzi, E., Caprino, R., & Lapolla, A. (2023). Long-term HbA1c variability and macro-/micro-vascular complications in type 2 diabetes mellitus: a meta-analysis update. Acta diabetologica, 60(6), 721–738. https://doi.org/10.1007/s00592-023-02037-8
Selvin, E., Steffes, M. W., Zhu, H., Matsushita, K., Wagenknecht, L., Pankow, J., Coresh, J., & Brancati, F. L. (2010). Glycated hemoglobin, diabetes, and cardiovascular risk in nondiabetic adults. The New England journal of medicine, 362(9), 800–811. https://doi.org/10.1056/NEJMoa0908359
Sherwani, S. I., Khan, H. A., Ekhzaimy, A., Masood, A., & Sakharkar, M. K. (2016). Significance of HbA1c Test in Diagnosis and Prognosis of Diabetic Patients. Biomarker insights, 11, 95–104. https://doi.org/10.4137/BMI.S38440
Shin, A., Connolly, S., & Kabytaev, K. (2023). Protein glycation in diabetes mellitus. Advances in clinical chemistry, 113, 101–156. https://doi.org/10.1016/bs.acc.2022.11.003
Song, J., Bai, H., Xu, H., Xing, Y., & Chen, S. (2022). HbA1c Variability and the Risk of Dementia in Patients with Diabetes: A Meta-Analysis. International journal of clinical practice, 2022, 7706330. https://doi.org/10.1155/2022/7706330
Sun, H., Saeedi, P., Karuranga, S., Pinkepank, M., Ogurtsova, K., Duncan, B. B., Stein, C., Basit, A., Chan, J. C. N., Mbanya, J. C., Pavkov, M. E., Ramachandaran, A., Wild, S. H., James, S., Herman, W. H., Zhang, P., Bommer, C., Kuo, S., Boyko, E. J., & Magliano, D. J. (2022). IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes research and clinical practice, 183, 109119. https://doi.org/10.1016/j.diabres.2021.109119
Tang, X. F., Yuan, D. S., Zhu, P., Xu, N., Yao, Y., Wang, P. Z., Chen, Y., Gao, L. J., Song, L., Yang, Y. J., Gao, R. L., Zhao, X. Y., & Yuan, J. Q. (2023). Baseline high-sensitivity C-reactive protein and glycosylated hemoglobinA1c predict adverse outcomes in patients with chronic coronary syndromes undergoing percutaneous coronary intervention. Heliyon, 10(1), e23900. https://doi.org/10.1016/j.heliyon.2023.e23900
World Health Organization (2011). Use of Glycated Haemoglobin (HbA1c) in the Diagnosis of Diabetes Mellitus: Abbreviated Report of a WHO Consultation.
Yang, C. Y., Su, P. F., Hung, J. Y., Ou, H. T., & Kuo, S. (2020). Comparative predictive ability of visitto-visit HbA1c variability measures for microvascular disease risk in type 2 diabetes. Cardiovascular diabetology, 19(1), 105. https://doi.org/10.1186/s12933-020-01082-9
Yasunari, K., Maeda, K., Nakamura, M., & Yoshikawa, J. (2002). Oxidative stress in leukocytes is a possible link between blood pressure, blood glucose, and C-reacting protein. Hypertension (Dallas, Tex. : 1979), 39(3), 777–780. https://doi.org/10.1161/hy0302.104670
Zhai, L., Lu, J., Cao, X., Zhang, J., Yin, Y., & Tian, H. (2023). Association Between the Variability of Glycated Hemoglobin and Retinopathy in Patients with Type 2 Diabetes Mellitus: A MetaAnalysis. Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme, 55(2), 103–113. https://doi.org/10.1055/a-1931-4400
Zhang, L., Wang, M., Zhang, R., Zhong, Y., Fan, H., Wang, M., & Wang, J. (2020). Hemoglobin glycation index in relationship to the risk of cardiovascular complication in patients with type 2 diabetes: A systematic review and meta-analysis. Journal of diabetes and its complications, 34(10), 107673. https://doi.org/10.1016/j.jdiacomp.2020.107673
Zhao, L., Hu, H., Zhang, L., Liu, Z., Huang, Y., Liu, Q., Jin, L., Zhu, M., & Zhang, L. (2024). Inflammation in diabetes complications: molecular mechanisms and therapeutic interventions. MedComm, 5(4), e516. https://doi.org/10.1002/mco2.516