The Many Faces of Carbohydrate Metabolism in Male Germ Cells: From Single Molecules to Active Polymers

The Many Faces of Carbohydrate Metabolism in Male Germ Cells: From Single Molecules to Active Polymers

Main Article Content

Franz Villarroel-Espíndola
R. Maldonado
H. Mancilla
A. Ramírez
K. Vander
K. Cereceda
Cecilia López
M. Castro
Constanza Angulo
J. Slebe
Ilona Concha

Abstract

Spermatogenesis is a complex physiological process that involves cell proliferation, meiotic division and a final cell differentiation of post-meiotic cells into spermatozoa. During this process male germ cells also undergo a metabolic differentiation process, in which post-meiotic spermatogenic cells (spermatids) but not meiotic spermatogenic cells (spermatocytes) respond differentially to D-glucose metabolism, glucose transporters (GLUTs) distribution and utilization of non-hexose substrates, such as lactate/pyruvate or dihydroxyacetone. These differences might be explained by the requirement for a specific metabolic process to support cell differentiation or in some cases, cell viability. In addition, though glycogen is considered to be the main glucose store, in male germ cells this polymer may play a novel role in cell proliferation, acting as a new marker for apoptotic events in testicular tissue via a yet unknown mechanism. In this article, we summarize the main metabolic changes that occur during male germ differentiation, with a specific focus on metabolic sources during spermatocyte to spermatid transition. The latter considering that these cells come from the same cell linage as specialized cells, but are not isolated from their environment, describing the roles from single molecules to polymers on the viability of male germ cells.

References

Albarracín, J. L.; Fernández-Novell, J. M.; Ballester, J.; Rauch, M. C.; Quintero-Moreno, A.; Peña, A.; Mogas, T.; Rigau, T.; Yañez, A.; Guinovart, J. J.; Slebe, J. C.; Concha, I. I. & Rodríguez-Gil, J. E.Gluconeogenesis-linked glycogen metabolism is important in the achievement of in vitro capacitation of dog spermatozoa in a medium without glucose. Biol. Reprod., 71(5):1437-45, 2004.

Alves, M. G.; Socorro, S.; Silva, J.; Barros, A.; Sousa, M.; Cavaco, J. E. & Oliveira, P. F. In vitro cultured human Sertoli cells secrete high amounts of acetate that is stimulated by 17ß-estradiol and suppressed by insulin deprivation. Biochim. Biophys. Acta, 1823(8):1389-94, 2012.

Alves, M. G.; Martins, A. D.; Rato, L.; Moreira, P. I.; Socorro, S. & Oliveira, P. F. Molecular mechanisms beyond glucose transport in diabetes-related male infertility. Biochim. Biophys. Acta, 1832(5):626-35, 2013a.

Alves, M. G.; Martins, A. D.; Cavaco, J. E.; Socorro, S. & Oliveira, P. F. Diabetes, insulin-mediated glucose metabolism and Sertoli/blood-testis barrier function. Tissue Barriers, 1(2):e23992, 2013.

Amann, R. P. & Schanbacher, B. D. Physiology of male reproduction. J. Anim. Sci., 57 Suppl. 2:380-403, 1983.

Amann, R. P. The cycle of the seminiferous epithelium in humans: a need to revisit? J. Androl., 29(5):469- 87, 2008.

Amano, Y.; Sakagami, H.; Tanaka, T.; Yamanaka, Y.; Nishimoto, Y.; Yamaguchi, M. & Takeda, M. Uncoupling of incorporation of ascorbic acid and apoptosis induction. Anticancer Res., 18(4A):2503- 6, 1998.

Anderson, J. E. & Thliveris, J. A. Testicular histology in streptozotocin-induced diabetes. Anat. Rec., 214(4):378-82, 1986.

Angulo, C.; Rauch, M. C.; Droppelmann, A.; Reyes, A. M.; Slebe, J. C.; Delgado-López, F.; Guaiquil, V. H.; Vera, J. C. & Concha, I. I. Hexose transporter expression and function in mammalian spermatozoa: cellular localization and transport of hexoses and vitamin C. J. Cell Biochem., 71(2):189-203, 1998.

Angulo, C.; Castro, M. A.; Rivas, C. I.; Segretain, D.; Maldonado, R.; Yañez, A. J.; Slebe, J. C.; Vera, J. C. & Concha, I. I. Molecular identification and functional characterization of the vitamin C transporters expressed by Sertoli cells. J. Cell. Physiol., 217(3):708-16, 2008.

Angulo, C.; Maldonado, R.; Pulgar, E.; Mancilla, H.; Córdova, A.; Villarroel, F.; Castro, M. A. & Concha, I. I. Vitamin C and oxidative stress in the seminiferous epithelium. Biol. Res., 44(2):169-80, 2011.

Arzac, J. P. Glycogen in human testicular biopsy material; preliminary report. J. Clin. Endocrinol. Metab., 10(11):1465-70, 1950.

Arzac, J. P. Physiological function of human testicular glycogen; a tentative theory. Ann. Ostet. Ginecol., 75(6):804-18, 1953.

Augustin, R. The protein family of glucose transport facilitators: It's not only about glucose after all. I. U. B. M. B. Life, 62(5):315-33, 2010.

Bajpai, M.; Gupta, G. & Setty, B. S. Changes in carbohydrate metabolism of testicular germ cells during meiosis in the rat. Eur. J. Endocrinol., 138(3):322-7, 1998.

Ballester, J.; Fernández-Novell, J. M.; Rutllant, J.; GarcíaRocha, M.; Jesús Palomo, M.; Mogas, T.; Peña, A.; Rigau, T.; Guinovart, J. J. & Rodríguez-Gil, J. E. Evidence for a functional glycogen metabolism in mature mammalian spermatozoa. Mol. Reprod. Dev., 56(2):207-19, 2000.

Banhegyi, G.; Braun, L.; Csala, M.; Puskás, F. & Mandl, J. Ascorbate metabolism and its regulation in animals. Free Radic. Biol. Med., 23(5):793-803, 1997.

Bouskila, M.; Hunter, R. W.; Ibrahim, A. F.; Delattre, L.; Peggie, M.; van Diepen, J. A.; Voshol, P. J.; Jensen, J. & Sakamoto, K. Allosteric regulation of glycogen synthase controls glycogen synthesis in muscle. Cell Metab., 12(5):456-66, 2010.

Brauchi, S.; Rauch, M. C.; Alfaro, I. E.; Cea, C.; Concha, I. I.; Benos, D. J. & Reyes, J. G. Kinetics, molecular basis, and differentiation of L-lactate transport in spermatogenic cells. Am. J. Physiol. Cell. Physiol., 288(3):C523-34, 2005.

Bucci, D.; Rodriguez-Gil, J. E.; Vallorani, C.; Spinaci, M.; Galeati, G. & Tamanini, C. GLUTs and mammalian sperm metabolism. J. Androl., 32(4):348-55, 2011.

Bustamante-Marín, X.; Quiroga, C.; Lavandero, S.; Reyes, J. G. & Moreno, R. D. Apoptosis, necrosis and autophagy are influenced by metabolic energy sources in cultured rat spermatocytes. Apoptosis, 17(6):539-50, 2012.

Cai, L.; Chen, S.; Evans, T.; Deng, D. X.; Mukherjee, K. & Chakrabarti, S. Apoptotic germ-cell death and testicular damage in experimental diabetes: prevention by endothelin antagonism. Urol. Res., 28(5):342-7, 2000.

Cameron, D. F.; Murray, F. T. & Drylie, D. D. Interstitial compartment pathology and spermatogenic disruption in testes from impotent diabetic men. Anat. Rec., 213(1):53-62, 1985.

Cikutovic, M.; Fuentes, N. & Bustos-Obregón, E. Effect of intermittent hypoxia on the reproduction of rats exposed to high altitude in the Chilean Altiplano. High Alt. Med. Biol., 10(4):357-63, 2009.

Daruwala, R.; Song, J.; Koh, W. S.; Rumsey, S. C. & Levine, M. Cloning and functional characterization of the human sodium-dependent vitamin C transporters hSVCT1and hSVCT2. F. E. B. S. Lett., 460(3):480-4, 1999.

Datta, K.; Misra, J.; Dasgupta, T.; Sengupta, S. & Sengupta, D. E. Glycogen metabolism in human fetal testes. J. Biosci., 13(2):117-21, 1988.

Doiron, B.; Cuif, M. H.; Chen, R. & Kahn, A. Transcriptional glucose signaling through the glucose response element is mediated by the pentose phosphate pathway. J. Biol. Chem., 271(10):5321-4, 1996.

Duran, J.; Tevy, M. F.; Garcia-Rocha, M.; Calbó, J.; Milán, M. & Guinovart, J. J. Deleterious effects of neuronal accumulation of glycogen in flies and mice. E. M. B. O. Mol. Med., 4(8):719-29, 2012.

Eddy, E. M. & O’Brien, D. A. The Spermatozoon. In: Knobil, E. & Neil, J. D. (Eds.). The Physiology of Reproduction. New York, Raven Press, 1994. pp.29.

Ewing, L. L.; Means, A. R.; Beames, C. G. Jr. & Montgomery, R. D. Biochemical changes in rat testis during postnatal maturation. J. Reprod. Fertil., 12(2):295-307, 1966.

Fabbrini, A.; Re, M. & Conti, C. Glycogen in the normal human testis: a histochemical and histoenzymatic study. J. Endocrinol., 43(4):499-506, 1969.

Farias, J. G.; Bustos-Obregón, E.; Orellana, R.; Bucarey, J. L.; Quiroz, E. & Reyes, J. G. Effects of chronic hypobaric hypoxia on testis histology and round spermatid oxidative metabolism. Andrologia, 37(1):47-52, 2005a.

Farías, J. G.; Bustos-Obregón, E. & Reyes, J. G. Increase in testicular temperature and vascularization induced by hypobaric hypoxia in rats. J. Androl., 26(6):693-7, 2005b.

Farias, J. G.; Bustos-Obregón, E.; Tapia, P. J.; Gutierrez, E.; Zepeda, A.; Juantok, C.; Cruz, G.; Soto, G.; Benites, J. & Reyes, J. G. Time course of endocrine changes in the hypophysis-gonad axis induced by hypobaric hypoxia in male rats. J. Reprod. Dev., 54(1):18-21, 2008.

Fiorani, M.; De Sanctis, R.; Scarlatti, F. & Stocchi, V. Substrates of hexokinase, glucose-6-phosphate dehydrogenase, and glyceraldehyde-3-phosphate dehydrogenase prevent the inhibitory response induced by ascorbic acid/iron and dehydroascorbic acid in rabbit erythrocytes. Arch. Biochem. Biophys., 356(2):159-66, 1998.

Fouquet, J. P. & Guha, S. Glycogen, phosphorylase and glycogen synthetase in hamster testis during postnatal development. J. Reprod. Fertil., 19(3):455-64, 1969.

Galardo, M. N.; Riera, M. F.; Pellizzari, E. H.; Chemes, H. E.; Venara, M. C.; Cigorraga, S. B. & Meroni, S. B. Regulation of expression of Sertoli cell glucose transporters 1 and 3 by FSH, IL1 beta, and bFGF at two different time-points in pubertal development. Cell Tissue Res., 334(2):295-304,2008.

Galardo, M. N.; Regueira, M.; Riera, M. F.; Pellizzari, E. H.; Cigorraga, S. B. & Meroni, S. B. Lactate regulates rat male germ cell function through reactive oxygen species. PLoS One, 9(1):e88024, 2014.

Godoy, A.; Ormazabal, V.; Moraga-Cid, G.; Zúñiga, F. A.; Sotomayor, P.; Barra, V.; Vasquez, O.; Montecinos, V.; Mardones, L.; Guzmán, C.; Villagrán, M.; Aguayo, L. G.; Oñate, S. A.; Reyes, A. M.; Cárcamo, J. G.; Rivas, C. I. & Vera, J. C. Mechanistic insights and functional determinants of the transport cycle of the ascorbic acid transporter SVCT2. Activation by sodium and absolute dependence on bivalent cations. J. Biol. Chem., 282(1):615-24, 2007.

Graham, T. E.; Yuan, Z.; Hill, A. K. & Wilson, R. J. The regulation of muscle glycogen: the granule and its proteins. Acta Physiol. (Oxf.), 199(4):489-98, 2010.

Guaiquil, V. H.; Farber, C. M.; Golde, D. W. & Vera, J. C. Efficient transport and accumulation of vitamin C in HL-60 cells depleted of glutathione. J. Biol. Chem., 272(15):9915-21, 1997.

Haber, R. S.; Weinstein, S. P.; O’Boyle, E. & Morgello, S. Tissue distribution of the human GLUT3 glucose transporter. Endocrinology, 132(6):2538-43, 1993.

Heijnen, H. F.; Oorschot, V.; Sixma, J. J.; Slot, J. W. & James, D. E. Thrombin stimulates glucose transport in human platelets via the translocation of the glucose transporter GLUT-3 from alpha-granules to the cell surface. J. Cell Biol., 138(2):323-30, 1997.

Herrera, E.; Salas, K.; Lagos, N.; Benos, D. J. & Reyes, J. G. Energy metabolism and its linkage to intracellular Ca2+ and pH regulation in rat spermatogenic cells. Biol. Cell., 92(6):429-40, 2000.

Hoshi, K.; Tsukikawa, S. & Sato, A. Importance of Ca2+, K+ and glucose in the medium for sperm penetration through the human zona pellucida. Tohoku J. Exp. Med., 165(2):99-104, 1991.

Ibberson, M.; Riederer, B. M.; Uldry, M.; Guhl, B.; Roth, J. & Thorens, B. Immunolocalization of GLUTX1 in the testis and to specific brain areas and vasopressin-containing neurons. Endocrinology, 143(1):276-84, 2002.

Johnson, J. H.; Newgard, C. B.; Milburn, J. L.; Lodish, H. F. & Thorens, B. The high Km glucose transporter of islets of Langerhans is functionally similar to the low affinity transporter of liver and has an identical primary sequence. J. Biol. Chem., 265(12):6548-51, 1990.

Jones, A. R.; Chantrill, L. A. & Cokinakis, A. Metabolism of glycerol by mature boar spermatozoa. J. Reprod. Fertil., 94(1):129-34, 1992.

Jutte, N. H.; Grootegoed, J. A.; Rommerts, F. F. & van der Molen, H. J. Exogenous lactate is essential for metabolic activities in isolated rat spermatocytes and spermatids. J. Reprod. Fertil., 62(2):399-405, 1981.

Kanfer, J.; Ashwell, G. & Burns, J. J. Formation of Llyxonic and L-xylonic acids from L-ascorbic acid in rat kidney. J. Biol. Chem., 235:2518-21, 1960.

Kayano, T.; Fukumoto, H.; Eddy, R. L.; Fan, Y. S.; Byers, M. G.; Shows, T. B. & Bell, G. I. Evidence for a family of human glucose transporter-like proteins. Sequence and gene localization of a protein expressed in fetal skeletal muscle and other tissues. J. Biol. Chem., 263(30):15245-8, 1988.

Kierszenbaum, A. L. Apoptosis during spermatogenesis: the thrill of being alive. Mol. Reprod. Dev., 58(1):1-3, 2001.

Kim, S. T. & Moley, K. H. Paternal effect on embryo quality in diabetic mice is related to poor sperm quality and associated with decreased glucose transporter expression. Reproduction, 136(3):313- 22, 2008.

Kuramori, C.; Hase, Y.; Hoshikawa, K.; Watanabe, K.;Nishi, T.; Hishiki, T.; Soga, T.; Nashimoto, A.; Kabe, Y.; Yamaguchi, Y.; Watanabe, H.; Kataoka, K.; Suematsu, M. & Handa, H. Mono-(2-ethylhexyl) phthalate targets glycogen debranching enzyme and affects glycogen metabolism in rat testis. Toxicol. Sci., 109(1):143-51, 2009.

Lie, P. P.; Cheng, C. Y. & Mruk, D. D. Signalling pathways regulating the blood-testis barrier. Int. J. Biochem. Cell Biol., 45(3):621-5, 2013.

Maher, F.; Vannucci, S. J. & Simpson, I. A. Glucose transporter proteins in brain. F. A. S. E. B. J., 8(13):1003-11, 1994.

Mann, T. Biochemistry of Semen. In: Creep, R. O. & Astwood, E. B. (Eds.). Handbook of Physiology. Section 7. Vol 5. Washington D. C., American Physiology Society, 1975. pp.321.

Massillon, D.; Chen, W.; Barzilai, N.; Prus-Wertheimer, D.; Hawkins, M.; Liu, R.; Taub, R. & Rossetti, L. Carbon flux via the pentose phosphate pathway regulates the hepatic expression of the glucose-6- phosphatase and phosphoenolpyruvate carboxykinase genes in conscious rats. J. Biol. Chem., 273(1):228-34, 1998.

May, J. M. Ascorbate function and metabolism in the human erythrocyte. Front. Biosci., 3:d1-10, 1998.

Mishra, D. P.; Pal, R. & Shaha, C. Changes in cytosolic Ca2+ levels regulate Bcl-xS and Bcl-xL expression in spermatogenic cells during apoptotic death. J. Biol. Chem., 281(4):2133-43, 2006.

Mita, M. & Hall, P. F. Metabolism of round spermatids from rats: lactate as the preferred substrate. Biol. Reprod., 26(3):445-55, 1982.

Moreno, R. D.; Lizama, C.; Urzúa, N.; Vergara, S. P. & Reyes, J. G. Caspase activation throughout the first wave of spermatogenesis in the rat. Cell Tissue Res., 325(3):533-40, 2006.

Moser, U. Uptake of ascorbic acid by leukocytes. Ann. N. Y. Acad. Sci., 498:200-15, 1987.

Mruk, D. D. & Cheng, C. Y. Sertoli-Sertoli and Sertoligerm cell interactions and their significance in germ cell movement in the seminiferous epithelium during spermatogenesis. Endocr. Rev., 25(5):747- 806, 2004.

Mueckler, M. & Thorens, B. The SLC2 (GLUT) family of membrane transporters. Mol. Aspects Med., 34(2- 3):121-38, 2013.

Nakamura, M.; Fujiwara, A.; Yasumasu, I.; Okinaga, S. & Arai, K. Regulation of glucose metabolism by adenine nucleotides in round spermatids from rat testes. J. Biol. Chem., 257(23):13945-50, 1981.

Nakamura, M.; Okinaga, S. & Arai, K. Metabolism of pachytene primary spermatocytes from rat testes: pyruvate maintenance of adenosine triphosphate level. Biol. Reprod., 30(5):1187-97, 1984.

Oliveira, P. F.; Alves, M. G.; Rato, L.; Laurentino, S.; Silva, J.; Sá, R.; Barros, A.; Sousa, M.; Carvalho, R. A.; Cavaco, J. E. & Socorro, S. Effect of insulin deprivation on metabolism and metabolismassociated gene transcript levels of in vitro cultured human Sertoli cells. Biochim. Biophys. Acta, 1820(2):84-9, 2012.

Palomo, M. J.; Fernandez-Novell, J. M.; Peña, A.; Guinovart, J. J.; Rigau, T. & Rodríguez-Gil, J. E. Glucose- and fructose-induced dog-sperm glycogen synthesis shows specific changes in the location of the sperm glycogen deposition. Mol. Reprod. Dev., 64(3):349-59, 2003.

Pinton, P.; Giorgi, C.; Siviero, R.; Zecchini, E. & Rizzuto, R. Calcium and apoptosis: ER-mitochondria Ca2+ transfer in the control of apoptosis. Oncogene, 27(50):6407-18, 2008.

Podmore, I. D.; Griffiths, H. R.; Herbert, K. E.; Mistry, N.; Mistry, P. & Lunec, J. Vitamin C exhibits prooxidant properties. Nature, 392(6676):559, 1998.

Puskas, F.; Gergely, P. Jr.; Banki, K. & Perl, A. Stimulation of the pentose phosphate pathway and glutathione levels by dehydroascorbate, the oxidized form of vitamin C. F. A. S. E. B. J. 14(10):1352-61, 2000.

Qutob, S.; Dixon, S. J. & Wilson, J. X. Insulin stimulates vitamin C recycling and ascorbate accumulation in osteoblastic cells. Endocrinology, 139(1):51-6, 1998.

Rato, L.; Alves, M. G.; Socorro, S.; Duarte, A. I.; Cavaco, J. E. & Oliveira, P. F. Metabolic regulation is important for spermatogenesis. Nat. Rev. Urol., 9(6):330-8, 2012.

Rato, L.; Alves, M. G.; Dias, T. R.; Lopes, G.; Cavaco, J. E.; Socorro, S. & Oliveira, P. F. High-energy diets may induce a pre-diabetic state altering testicular glycolytic metabolic profile and male reproductive parameters. Andrology, 1(3):495-504, 2013.

Rauch, M. C.; Ocampo, M. E.; Bohle, J.; Amthauer, R.; Yáñez, A. J.; Rodríguez-Gil, J. E.; Slebe, J. C.; Reyes, J. G. & Concha, I. I. Hexose transporters GLUT1 and GLUT3 are colocalized with hexokinase I in caveolae microdomains of rat spermatogenic cells. J. Cell. Physiol., 207(2):397-406, 2006.

Re, M.; Iannitelli, M.; Cerasaro, A.; Santoro, L.; Cuomo, M.; Micali, F.; Racheli, T. & Clemenzia, G. Histochemical study of glycogen and phosphorylase activity on bilateral biopsies of oligospermic men with varicocele. Arch. Androl., 10(1):79-83, 1983.

Reyes, J. G.; Herrera, E.; Lobos, L.; Salas, K.; Lagos, N.; Jorquera, R. A.; Labarca, P. & Benos, D. J. Dynamics of intracellular calcium induced by lactate and glucose in rat pachytene spermatocytes and round spermatids. Reproduction, 123(5):701-10, 2002.

Roach, P. J.; DePaoli-Roach, A. A.; Hurley, T. D. & Tagliabracci, V. S. Glycogen and its metabolism: some new developments and old themes. Biochem. J., 441(3):763-87, 2012.

Rumsey, S. C.; Kwon, O.; Xu, G. W.; Burant, C. F.; Simpson, I. & Levine, M. Glucose transporter isoforms GLUT1 and GLUT3 transport dehydroascorbic acid. J. Biol. Chem., 272(30):18982-9, 1997.

Saez, I.; Duran, J.; Sinadinos, C.; Beltran, A.; Yanes, O.; Tevy, M. F.; Martínez-Pons, C.; Milán, M. & Guinovart, J. J. Neurons have an active glycogen metabolism that contributes to tolerance to hypoxia. J. Cereb. Blood Flow Metab., 34(6):945-55, 2014.

Sakagami, H. & Satoh, K. Modulating factors of radical intensity and cytotoxic activity of ascorbate (review). Anticancer Res., 17(5A):3513-20, 1997.

Seilicovich, A. & Pérez-Lloret, A. Glycogen and related enzymes in normal and cryptorchid human testes: a cytochemical study. J. Reprod. Fertil., 33(3):379- 83, 1973.

Shaha, C.; Tripathi, R. & Mishra, D. P. Male germ cell apoptosis: regulation and biology. Philos. Trans. R. Soc. Lond. B Biol. Sci., 365(1546):1501-15, 2010.

Sinha Hikim, A. P. & Swerdloff, R. S. Hormonal and genetic control of germ cell apoptosis in the testis. Rev. Reprod., 4(1):38-47, 1999.

Sultan Sheriff, D. S. Further studies on testicular lipids and glycogen in human patients with unilateral varicocele. Andrologia, 16(5):442-5, 1984.

Thakur, S. C.; Thakur, S. S.; Chaube, S. K. & Singh, S. P. Subchronic supplementation of lithium carbonate induces reproductive system toxicity in male rat. Reprod. Toxicol., 17(6):683-90, 2003.

Travis, A. J.; Jorgez, C. J.; Merdiushev, T.; Jones, B. H.; Dess, D. M.; Diaz-Cueto, L.; Storey, B. T.; Kopf, G. S. & Moss, S. B. Functional relationships between capacitation-dependent cell signaling and compartmentalized metabolic pathways in murine spermatozoa. J. Biol. Chem., 276(10):7630-6, 2001.

Tsukaguchi, H.; Tokui, T.; Mackenzie, B.; Berger, U. V.; Chen, X. Z.; Wang, Y.; Brubaker, R. F. & Hediger, M. A. A family of mammalian Na+-dependent L-ascorbic acid transporters. Nature, 399(6731):70-5, 1999.

Uldry, M.; Ibberson, M.; Hosokawa, M. & Thorens, B. GLUT2 is a high affinity glucosamine transporter. F. E. B. S. Lett., 524(1-3):199-203, 2002.

Uldry, M. & Thorens, B. The SLC2 family of facilitated hexose and polyol transporters. Pflugers Arch., 447(5):480-9, 2004.

Valles-Ortega, J.; Duran, J.; Garcia-Rocha, M.; Bosch, C.; Saez, I.; Pujadas, L.; Serafin, A.; Cañas, X.; Soriano, E.; Delgado-García, J. M.; Gruart, A. & Guinovart, J. J. Neurodegeneration and functional impairments associated with glycogen synthase accumulation in a mouse model of Lafora disease. E. M. B. O. Mol. Med., 3(11):667-81, 2011.

Vaulont, S.; Vasseur-Cognet, M. & Kahn, A. Glucose regulation of gene transcription. J. Biol. Chem., 275(41):31555-8, 2000.

Venkatarami Reddy, K.; Geethanjali, N.; Dhananjaya Reddy, Y.; Reddanna, P. & Govindappa, S. Effect of induced bilateral cryptorchidism on the carbohydrate metabolism of reproductive tissues in albino rats. Arch. Int. Physiol. Biochim., 91(5):405-10, 1983.

Vera, J. C.; Rivas, C. I.; Fischbarg, J. & Golde, D. W. Mammalian facilitative hexose transporters mediate the transport of dehydroascorbic acid. Nature, 364(6432):79-82, 1993.

Vera, J. C.; Rivas, C. I.; Velásquez, F. V.; Zhang, R. H.; Concha, I. I. & Golde, D. W. Resolution of the facilitated transport of dehydroascorbic acid from its intracellular accumulation as ascorbic acid. J. Biol. Chem., 270(40):23706-12, 1995.

Vilchez, D.; Ros, S.; Cifuentes, D.; Pujadas, L.; Vallès, J.; García-Fojeda, B.; Criado-García, O.; FernándezSánchez, E.; Medraño-Fernández, I.; Domínguez, J.; García-Rocha, M.; Soriano, E.; Rodríguez de Córdoba, S. & Guinovart, J. J. Mechanism suppressing glycogen synthesis in neurons and its demise in progressive myoclonus epilepsy. Nat. Neurosci., 10(11):1407-13, 2007.

Villarroel-Espíndola, F.; Maldonado, R.; Mancilla, H.; vander Stelt, K.; Acuña, A. I.; Covarrubias, A.; López, C.; Angulo, C.; Castro, M. A.; Slebe, J. C.; Durán, J.; García-Rocha, M.; Guinovart, J. J. & Concha, I. I. Muscle glycogen synthase isoform is responsible for testicular glycogen synthesis: glycogen overproduction induces apoptosis in male germ cells. J. Cell. Biochem., 114(7):1653-64, 2013.

Villarroel-Espíndola, F. D. Regulación del metabolismo del glucógeno testicular y su posible relación con apoptosis de células germinales masculinas. Doctoral Thesis. Valdivia, Universidad Austral de Chile, 2012.

Weber, J. E.; Russell, L. D.; Wong, V. & Paterson, R. N. Three-dimensional reconstruction of a rat stage V Sertoli cell: II. Morphometry of Sertoli--Sertoli and Sertoli--germ-cell relationships. Am. J. Anat., 167(2):163-79, 1983.

Wilson, J. X. The physiological role of dehydroascorbic acid. F. E. B. S. Lett., 527(1-3):5-9, 2002.

Wilson, J. X. Regulation of vitamin C transport. Annu. Rev. Nutr., 25:105-25, 2005.

Wong, V. & Russell, L. D. Three-dimensional reconstruction of a rat stage V Sertoli cell: I. Methods, basic configuration, and dimensions. Am. J. Anat., 167(2):143-61, 1983.

Worby, C. A.; Gentry, M. S. & Dixon, J. E. Malin decreases glycogen accumulation by promoting the degradation of protein targeting to glycogen (PTG). J. Biol. Chem., 283(7):4069-76, 2008.

Yañez, A. J.; Nualart, F.; Droppelmann, C.; Bertinat, R.; Brito, M.; Concha, I. I. & Slebe, J. C. Broad expression of fructose-1,6-bisphosphatase and phosphoenolpyruvate carboxykinase provide evidence for gluconeogenesis in human tissues other than liver and kidney. J. Cell. Physiol., 197(2):189- 97, 2003.

Yañez, A. J.; Bustamante, X.; Bertinat, R.; Werner, E.; Rauch, M. C.; Concha, I. I.; Reyes, J. G. & Slebe, J. C. Expression of key substrate cycle enzymes in rat spermatogenic cells: fructose 1,6 bisphosphatase and 6 phosphofructose 1-kinase. J. Cell. Physiol., 212(3):807-16, 2007.