Foreign Gene Expression in the Mouse Cauda Epididymis is Regulated by Androgens
Main Article Content
Abstract
This paper deals with the efficiency of in vivo gene transfer to the mouse cauda epididymis
and its relation to androgens. Previous experiments in the female reproductive tract have indicated that the efficiency of transfection is related to the hormonal stage of the animal, nevertheless no analysis have been done in the male tract. We used in vivo gene transfer to the mouse cauda epididymis employing a gene construction that expresses the Green Fluorescent Protein (GFP). Untreated and Testosterone treated males were employed. Testosterone injections (5µg/g weight) were done from 2 days before the gene transfer, and
treatment continued each day during a total period of 15 days. Fluorescence microscopy observations showed the expression of GFP in the cytoplasm of the principal cells in the epididymal tubules. The application of the QWin Program that measures the percentage of fluorescent areas showed that they are increased in the epididymis of treated males. This increase was particularly observed two days after gene injections (from 32.24 % in untreated animals to 47.62 % in testosterone treated males) and after seven days (from 29.98 % to 43.05 %). The possibility to improve transfection efficiency would increase the knowledge on epididymal physiology and would permit to modify the fertilizing capacity in mammals.
References
Anderson, W. F. Human gene therapy. Nature, 392(6679 Suppl.):25-30, 1998.
Arnold, A. S.; Laporte, V.; Dumont, S.; Alpert-Collin, A.; Erbacher, P.; Coupin, G.; Levy, R.; Poindron, P. & Gies, J. P. Comparing reagents for efficient transfection of human primary myoblasts: FuGENE 6, Effectene and ExGen 500. Fundam. Clin. Pharmacol., 20(1):81-9, 2006.
Bedford, J. M. Evolution of the sperm maturation and sperm storage functions of the epididymis. In: Fawcett, D. W. & Bedford, J. M. (Eds.). The Spermatozoon – Maturation, Motility, Surface Properties and Comparative Aspects. Baltimore, Urban and Schwarzenberg, 1979. pp.7-22.
Brenner, R. M. & Maslar, I. A. The primate oviduct and endometrium. In: Knobil, E. & Neil, J. D. (Eds.). The Physiology of Reproduction. Vol I. 2nd ed. New York, Raven Press, 1988. pp.303- 29.
Brooks. D. E. Androgen-regulated epididymal secretory proteins associated with post-testicular sperm development. Ann. N. Y. Acad. Sci., 513:179-94, 1987.
Charnock-Jones, D. S.; Sharkey, A. M.; Jaggers, D. C.; Yoo, H. J.; Heap, R. B. & Smith, S. K. In-vivo gene transfer to the uterine endometrium. Human Reprod., 12(1):17-20, 1997.
Cooper, T. G. The Epididymis, Sperm Maturation and Fertilisation. Heidelberg, Springer Verlag, 1986.
Daftary, G. S. & Taylor, H. S. Reproductive tract gene transfer. Fertil. Steril., 80(3):475-84, 2003.
Danko, I.; Williams, P.; Herweijer, H.; Zang, G.; Latendresse, J. S.; Bock, I. & Wolff, J. A. High expression of naked plasmid DNA in muscles of young rodents. Hum. Mol. Genet., 6(9):1435-43, 1997.
Dufresne, J.; St-Pierre, N.; Viger, R. S.; Hermo, L. & Cyr, D. G. Characterization of a novel epididymal cell line to study epididymal function. Endocrinology, 146(11):4710-20, 2005.
Esponda, P. & Bedford, J. M. The influence of body temperature and castration on the protein composition of fluid in the rat cauda epididymidis. J. Reprod. Fertil., 78(2):505-14, 1986.
Esponda, P. & Carballada, R. In-vivo gene transfer induces transgene expression in cells and secretions of the mouse cauda epididymis. Mol. Hum. Reprod., 15(6):355-61, 2009.
Esponda, P.; Goldstein, M. & Witkin, S. S. In vitro transfection of the human vas deferens using DNA-liposome and DNA-neutral lipid complexes. Fertil. Steril., 81(1):171-5, 2004.
Fan, X. & Robaire, B. Orchidectomy induces a wave of apoptotic cell death in the epididymis. Endocrinology, 139(4):2128-36, 1989.
Fortunati, E.; Bout, A.; Zanta, M. A.; Valerio, D. & Scarpa, M. In vitro and in vivo gene transfer to pulmonary cells mediated by cationic liposomes. Biochem. Biophys. Act., 1306(1):55-62, 1996.
Gooren, L. Androgen deficiency in the aging male: benefits and risks of androgen supplementation. J. Steroid Biochem. Molec. Biol., 85(2-5):349- 55, 2003.
Hart, S. L. Lipid carriers for gene therapy. Curr. Drug Deliv., 2(4):423-8, 2005.
Huguet, E. & Esponda, P. Foreign DNA introduced into the vas deferens is gained by mammalian spermatozoa. Mol. Reprod. Dev., 51(1):42-52, 1998.
Jara, M.; Carballada, R. & Esponda, P. Age-induced apoptosis in the male genital tract of the mouse. Reproduction, 127(3):359-66, 2004.
Jones, R. Plasma membrane structure and remodelling during sperm maturation in the epididymis. J. Reprod. Fertil. Suppl., 53:73-84, 1998.
Jones, R.; Brown, C. R.; Von Glós, K. I. & Parker, M. G. Hormonal regulation of protein synthesis in the rat epididymis. Characterization of androgen-dependent and testicular fluiddependent proteins. Biochem. J., 188(3):667- 76, 1980.
Katkin, J. P.; Gilbert, B. E.; Langston, C.; French, K. & Beaudet, A. L. Aerosol delivery of a betagalactosidase adenoviral vector to the lungs of rodents. Hum. Gene Ther., 6(8):985-95, 1995.
Kendall, J. M. & Badminton, M. N. Aequorea victoria bioluminescence moves into an exciting new era. Trends. Biotechnol., 16(5):216-24, 1998.
Kirby, J. L.; Yang, L.; Labus, J. C.; Lye, R. J.; Hsia, N.; Day, R.; Cornwall, G. A. & Hinton, B. T. Characterization of epididymal epithelial cellspecific gene promoters by in vivo electroporation. Biol. Reprod., 71(2):613-9,2004.
Kirchhoff, C.; Pera, I.; Derr, P.; Yeung, C. H. & Cooper, T. The molecular biology of the sperm surface. Post-testicular membrane remodelling. Adv. Exp. Med. Biol., 424:221-32, 1997.
Kirchhoff, C.; Araki, Y.; Huhtaniemi, I.; Matusik, R. J.; Osterhoff, C.; Poutanen, M.; Samalecos, A.; Sipilä, P.; Suzuki, K. & Orgebin-Crist, M. C. Immortalization by large T-antigen of the adult epididymal duct epithelium. Mol. Cell. Endocrinol., 216(1-2):83-94, 2004.
Laurema, A.; Lumme, S.; Heinonen, S. E.; Heinonen, S. & Ylä-Herttuala, S. Transduction patterns and efficiencies in rabbit uterine tissues after intraluminal uterine adenovirus administration vary with the reproductive cycle. Acta Obstet. Gynecol. Scand., 86(9):1035-40, 2007.
Ledley, F. D. Nonviral gene therapy: the promise of genes as pharmaceutical products. Hum. Gene Ther.,6(9):1129-44, 1995.
Ledley, T. S. & Ledley, F. D. Multicompartment, numerical model of cellular events in the pharmacokinetics of gene therapies. Hum. Gene Ther., 5(6):679-91, 1994.
Ledley, F. D.; McNamee, L. M.; Uzdil, V. & Morgan, I. W. Why commercialization of gene therapy stalled; examining the life cycles of gene therapy technologies. Gene Ther., 21(2):188-94, 2014.
Lye, R. J. & Hinton, B. T. Technologies for the study of epididymal-specific genes. Mol. Cell Endocrinol., 216(1-2):23-30, 2004.
Mann, T. & Lutwak-Mann, C. Male Reproductive Function and Semen. Berlin, Springer Verlag, 1981.
Moore, H. D. Effects of castration on specific glycoprotein secretions of the epididymis in the rabbit and hamster. J. Reprod. Fertil., 61(2):347- 54, 1981.
Mulligan, R. C. The basic science of gene therapy. Science, 260(5110):926-32, 1993.
Olson, K. R.; McIntosh, J. R. & Olmsted, J. B. Analysis of MAP 4 function in living cells using green fluorescent protein (GFP) chimeras. J. Cell Biol., 130(3):639-50, 1995.
Qu, B.; Gu, J.; Shen, J.; Qin, J.; Bao, J.; Hu, Y.; Zeng, W. & Dong, W. Trehalose maintains vitality of mouse epididymal epithelial cells and mediates gene transfer. PLoS One, 9(3):e92483, 2014.
Relloso, M. & Esponda, P. In-vivo transfection of the female reproductive tract epithelium. Mol. Hum. Reprod., 6(12):1099-105, 2000.
Selinger, C. I.; Day, C. J. & Morrison, N. A. Optimized transfection of diced siRNA into mature primary human osteoclasts: inhibition of cathepsin K mediated bone resorption by siRNA. J. Cell. Biochem., 96(5):996-1002, 2005.
Trezise, A. E.; Palazon, L.; Davies, W. L. & Colledge, W. H. In vivo gene expression: DNA electrotransfer. Curr. Opin. Mol. Ther., 5(4):397- 404, 2003.
Valenzuela, M.; Relloso, M. & Esponda, P. In vivo transfection of the mouse vas deferens. J. Exp. Zool., 293(5):532-40, 2002.
Vasir, J. K. & Labhasetwar, V. Polymeric nanoparticles for gene delivery. Expert Opin. Drug. Deliv., 3(3):325-44, 2006.
Verma, I. M. & Weitzman, M. D. Gene therapy: twenty-first century medicine. Annu. Rev. Biochem., 74:711-38, 2005.
Wolff, J. A. & Budker, V. The mechanism of naked DNA uptake and expression. Adv. Genet., 54:3- 20, 2005.
Yu, X.; Suziki, K.; Wang, Y.; Gupta, A.; Jin, R.; Orbegin-Crist, M. C. & Matusik, R. The role of forkhead box A2 to restrict androgen-regulated gene expression of lipocalin 5 in the mouse epididymis. Mol. Endocrinol., 20(10):2418-31, 2006.
Zelenin, A. V.; Alimov, A. A.; Zelenina, I. A.; Semenova, M. L.; Rodova, M. A.; Chernov, B. K. & Kolesnikov, V. A. Transfer of foreign DNA into the cells of developing mouse embryos by microprojectile bombardment. F. E. B. S. Lett., 315(1):29-32, 1993.