Environmental Risk and Toxicity Effect of Organophosphorus Insecticides on Male Red Earthworm (Eisenia foetida)

Environmental Risk and Toxicity Effect of Organophosphorus Insecticides on Male Red Earthworm (Eisenia foetida)

Main Article Content

O. Espinoza-Navarro
E. Bustos-Obregón

Abstract

Organophosphate pesticides are widely used to eliminate pests in agriculture. In Arica- Chile, they were used to control and eliminate the plague of fruit fly (Ceratitis capitata). They act as acetylcholinesterase inhibitors and induce DNA damage. The aim of this study was to analyze the effects of malathion and methamidophos two organophosphate pesticides on male reproductive parameters of red earthworm Eisenia foetida. After determining the LD50 in mg per kilogram of soil (malathion= 880 mg/kg and methamidophos= 85.3 mg/kg), we proceeded to subdue Eisenia foetida at a dose of 1/10, 1/6, 1/3 and 2/3 of the LD50. The control groups were sprayed with water. All groups were analyzed at 1, 6, 15 and 30 days post treatment. The weight and external morphological changes was determined. Sperm count was held in camera Neubaur, DNA integrity was determined with Acridine orange test. The Ethics / Bioethics Committee at the University of Tarapaca, approved the research protocols. The results show that both organophosphate express a significant decrease in body weight in all animals treated with 100% of coiled tail. A significant rise in the number of sperm at 1, 6 and 15 days followed by a significant decrease from 15 to 30 days was observed. A significant increase of abnormal metachromatic sperm (red fluorescence) in all treated animals was observed. It is concluded that malathion and methamidophos, alter the external morphology, sperm count and quality of Eisenia foetida red earthworm. The use of these chemicals needs better handling and storage procedures to avoid altering human health and the environment.

References

Andreetta, A. M.; Stockert, J. C. & Barrera, C. A simple method to detect sperm chromatin abnormalities: cytochemical mechanism and possible value in predicting semen quality in assisted reproductive procedures. Int. J. Androl., 18(Suppl. 1):23-8, 1995.

Baconi, D. L.; Bârca, M.; Manda, G.; Ciobanu, A. M. & Balalau, C. Investigation of the toxicity of some organophosphorus pesticides in a repeated dose study in rats. Rom. J. Morphol. Embryol., 54(2):349-56, 2013.

Bello-Ramírez, A. M.; Carreón-Garabito, B. Y. & NavaOcampo, A. A. A theoretical approach to the mechanism of biological oxidation of organophosphorus pesticides. Toxicology, 149(2-3):63-8, 2000.

Basiak, J.; Jaoszynski, P.; Trzeciak, A. & Szyfter, K. In vitro studies on the genotoxicity of the organophosphorus insecticide malathion and its two analogues. Mutat. Res., 445(2):275-83, 1999.

Brenner, L. Malathion fact sheet. J. Pestic. Reform, 12(4):29-37, 1992.

Bustos-Obregón, E. & Goicochea, R. I. Pesticide soil contamination mainly affects earthworm male reproductive parameters. Asian J. Androl., 4(3):195-9, 2002.

Burruel, V. R.; Raabe, O. G.; Overstreet, J. W.; Wilson, B. W. & Wiley, L. M. Paternal effects from methamidophos administration in mice. Toxicol. Appl. Pharmacol., 165(2):148-57, 2000.

Cikutovic, M. A.; Fitzpatrick, L. C.; Goven, A. J.; Venables, B. J.; Giggleman, M. A. & Cooper, E. L. Wound healing in earthworms Lumbricus terrestris: a cellular-based biomarker for assessing sublethal chemical toxicity. Bull. Environ. Contam. Toxicol., 62(4):508-14, 1999.

Chen, L.; Lu, X. & Ma, Y. Enantioselective effects of methamidophos on the coelomocytes lysosomal membrane stability of Eisenia foetida. Bull. Environ. Contam. Toxicol., 89(6):1161-4, 2012.

Chirinos, D. T. & Geraud-Pouey, F. El manejo de plagas agrícolas en Venezuela. Análisis y reflexiones sobre algunos casos. Interciencia, 36(3):192-9, 2011.

Dureja, P. & Tanwar, R. Pesticide residues in soil, invertebretes. In: Pesticides: Evaluation of Environmental Pollution. Rathore, H. S. & Nollet, L. M. L. (Eds.). Boca Raton, C. R. C. Press, 2002. pp.337-60.

Environmental Protection Agency (EPA). The EPA publishes amended Azinphos-Methyl cancellation order allowing use of existing stocks through September 2013. Pesticide News Story, Environmental Protection Agency (EPA), 2012. Available in: http://archive.epa.gov/pesticides/news/web/html/azmcancellation.html/

Espinoza-Navarro, O. & Bustos-Obregón, E. Effect of malathion on the male reproductive organs of earthworms, Eisenia foetida. Asian J. Androl., 7(1):97-101, 2005.

Espinoza-Navarro, O. & Bustos-Obregón, E. Effects of malathion on cellularity and sperm differentiation in testis and epididymis of adult rats. Int. J. Morphol., 32(1):119-24, 2014.

García-Santos, G. & Keller-Forrer, K. Avoidance behaviour of Eisenia fetida to carbofuran, chlorpyrifos, mancozeb and metamidophos in natural soils from the highlands of Colombia. Chemosphere, 84(5):651-6, 2011.

Hashjin, G.; Dizaj, F. S.; Attaran, H. & Koohi, M. K. Malathion induces anxiety in the male adult mouse. Arch. Med. Sci., 9(2):368-71, 2013.

Joshi, S. C. & Sharma, P. Male reproductive toxicity of organophosphorous compounds: a review. Toxicol. Environ. Chem., 93(7):1486-507, 2011.

Karunaratne, S. H. & Hemingway, J. Malathion resistance and prevalence of the malathion carboxylesterase mechanism in populations of mosquito vectors of disease in Sri Lanka. Bull. World Health Organ., 79(11):1060-4, 2001.

Kwong, T. C. Organophosphate pesticides: biochemistry and clinical toxicology. Ther. Drug Monit., 24(1):144-9, 2002.

Lin, D.; Zhou, Q.; Xie, X. & Liu, Y. Potential biochemical and genetic toxicity of triclosan as an emerging pollutant on earthworms (Eisenia foetida). Chemosphere, 81(10):1328-33, 2010.

Lu, X. T.; Ma, Y.; Wang, C.; Zhang, X. F.; Jin, da Q. & Huang, C. J. Cytotoxicity and DNA damage of five organophosphorus pesticides mediated by oxidative stress in PC12 cells and protection by vitamin E. J. Environ. Sci. Health B., 47(5):445-54, 2001.

Organisation for Economic Cooperation and Development (OECD). Test No. 207: Earthworm, Acute Toxicity Tests. OECD Guidelines for the Testing of Chemicals, Section 2. Effects on Biotic Systems, 1984.

Olalquiaga Fauré, G. & Lobos Aguirre, C. La mosca del Mediterráneo en Chile, introducción y erradicación. Santiago de Chile, Ministerio de Agricultura, 1993.

Phugare, S. S.; Gaikwad, Y. B. & Jadhav, J. P. Biodegradation of acephate using developed bacterial consortium and further toxicological analysis using earthworm (Lumbricus terrestris) as a model animal. Int. Biodeterior. Biodegrad., 69:1-9, 2012.

Salazar-Arredondo, E.; de Jesús Solís-Heredia, M.; Rojas-García, E.; Hernández-Ochoa, I. & Quintanilla-Vega, B. Sperm chromatin alteration and DNA damage by methyl-parathion, chlorpyrifos and diazinon and their oxon metabolites in human spermatozoa. Reprod. Toxicol., 25(4):455-60,2008.

Sogorb, M. A. & Vilanova, E. Enzymes involved in the detoxification of organophosphorus, carbamate and pyrethroid insecticides through hydrolysis. Toxicol. Lett., 128(1-3):215-28, 2002.

Sorour, J. & Larink, O. Toxic effects of benomyl on the ultrastructure during spermatogenesis of the earthworm Eisenia fetida. Ecotoxicol. Environ. Saf., 50(3):180-8, 2001.

Strada, J.; Ricca, A.; Conles, M.; Silva, M.; Rojas. D.; Casini, C.; Piati, F. & Martínez, M. J. Evaluación de residuos de plaguicidas en granos de maíz (Zea mays L.) y trigo (Triticum aestivum L.) posterior a la aplicacion en el almacenamiento y en el campo. Interciencia, 37(6):412-7, 2012.

Toppari, J.; Larsen, J. C.; Christiansen, P.; Giwercman, A.; Grandjean, P.; Guillette, L. J. Jr.; Jégou, B.; Jensen, T. K.; Jouannet, P.; Keiding, N.; Leffers, H.; McLachlan, J. A.; Meyer, O.; Müller, J.; RajpertDe Meyts, E.; Scheike, T.; Sharpe, R.; Sumpter, J. & Skakkebaek, N. E. Male reproductive health and environmental xenoestrogens. Environ. Health Perspect., 104(Suppl. 4):741-803, 1996.

Yasmin, S. & D’Souza, D. Effects of Pesticides on the Growth and Reproduction of Earthworm: A Review. App. Environ. Soil Sci., 2010:678360, 2010.