Validación de la fórmula de estimación de volumen y ultrasonido 2D para la evaluación del volumen de los riñones y el bazo: un estudio in vitro Validación de la evaluación del volumen por ultrasonido 2D
Contenido principal del artículo
Resumen
Se encontró que la precisión de la estimación del volumen de órganos internos realizada con ultrasonido (US) es multifactorial. El objetivo fue describir y validar la evaluación de volumen mediante ecografía y las fórmulas estándar de estimación de volumen para órganos intraabdominales de diferentes formas utilizando bazos y riñones.
Se evaluaron riñones cadavéricos disecados (n = 25) y bazos (n = 29) para obtener medidas lineales y volúmenes autogenerados por ultrasonido (USV). Se utilizaron medidas lineales para calcular los volúmenes manualmente con fórmulas de estimación de volumen elipsoide, prolate y Lambert. Los volúmenes reales (AV) de los órganos se obtuvieron mediante el método de desplazamiento de agua. Se comparó la precisión de la evaluación del volumen de USV y diferentes fórmulas comparando el sesgo, la precisión y el análisis de la gráfica de Bland-Altman. El procedimiento de medición lineal y de volumen mediante US fue confiable con alta concordancia inter e intraobservadores (lineal: α de Chronbach = 0,983 a 0,934; volúmenes: α de Chronbach = 0,989). Las estimaciones de USV fueron precisas con una alta correlación con AV y un bajo sesgo de estimación (-5,9%). Además, las fórmulas prolate (sesgo = -0,75%) y elipsoide (sesgo = -3,75%) fueron confiables con un sesgo insignificante en los volúmenes estimados. Por el contrario, la fórmula de Lambert no fue confiable debido a un alto sesgo (41,6%). Para todos los métodos evaluados, se encontró que el error de estimación estaba relacionado con el tamaño del órgano (T = 3.483; p = 0.001), principalmente cuando el órgano evaluado es mayor de 50 ml. Además, se encontró que el error de estimación de forma está relacionado con la fórmula de estimación de volumen usado. se encontró que el error de estimación estaba relacionado con el tamaño del órgano (T = 3.483; p = 0.001), principalmente cuando el órgano evaluado es mayor de 50 ml. Además, se encontró que el error de estimación de forma está relacionado con la fórmula de estimación de volumen usado. se encontró que el error de estimación estaba relacionado con el tamaño del órgano (T = 3.483; p = 0.001), principalmente cuando el órgano evaluado es mayor de 50 ml. Además, se encontró que el error de estimación de forma está relacionado con la fórmula de estimación de volumen usado.
Este estudio ha validado el USV para evaluaciones de volumen renal y esplénico al mismo tiempo que describe la fórmula de cálculo de volumen empleada, el tamaño y la forma de los órganos como contribuyentes significativos de la precisión de la estimación de volumen.
Citas
Abdelwahab HA, Abdalla HM, Sherief MH, et al. (2014) The reliability and reproducibility of ultrasonography for measuring the residual urine volume in men with lower urinary tract symptoms. Arab J Urol. 12:285–289. https://doi.org/10.1016/j.aju.2014.10.002
Anderson NG, Jolley IJ, Wells JE. (2007) Sonographic estima- tion of fetal weight: comparison of bias, precision and consistency using 12 different formulae. Ultrasound Obstet Gynecol. 30:173-179. https://doi.org/10.1002/uog.4037
Asghar A, Agrawal D, Yunus SM, et al. (2011) Standard splenic volume estimation in north indian adult population : using 3d reconstruction of abdominal CT scan images. Anat Res Int. ID: 707325 doi:10.1155/2011/707325
Benjamin A, Chen M, Li Q, et al. (2020) Renal volume estimation using freehand ultrasound scans: an ex vivo demonstration. Ultrasound Med Biol. doi:https://doi.org/10.1016/j.ultrasmedbio.2020.03. 006.
Cheong B, Muthupillai R, Rubin MF, et al. (2017) Normal values for renal length and volume as measured by magnetic resonance imaging. Clin J Am Soc Nephrol. 2:38-45. https://doi.org/10.2215/cjn.00930306
Eri LM, Thomassen H, Brennhovd B, et al. (2002) Accuracy and repeatability of prostate volume measurements by transrectal ultrasound. Prostate Cancer Prostatic Dis. 5:273-278. doi:10.1038/sj.pcan.4500568
Ghani KR, Pilcher J, Rowland D, et al. (2008) Portable ultrasonography and bladder volume accuracy- a comparative study using three-dimensional ultrasonography. Urology. 72:24–28. https://doi.org/10.1016/j.urology.2008.02.033
Gruber IV, Rueckert M, Kagan KO, et al. (2013) Measurement of tumour size with mammography, sonography and magnetic resonance imaging as compared to histological tumour size in primary breast cancer. BMC Cancer. 13:1. doi:10.1186/1471-2407-13-328
Kodikara I, Abeysekara I, Gamage D, et al. (2020) Assessment of 2D ultrasound fluid volume estimation accuracy in different shaped objects: an in vitro study. Acta Radiologica. 61(2):253-259. doi:10.1177/0284185119854198
Kodikara I, Gamage D, Abeysekara I, et al. (2020) Impact of volume calculation formulae on volume estimation accuracy of different shaped objects: an in vitro ultrasound and CT study. Acta Radiologica. 61(10):1414-1420. doi:10.1177/0284185120901505
Kodikara SKYI, Nanayakkara BCIJ, Nanayakkara BG, et al. (2017) Splenic morphometry in a group of Sri Lankan adult population – A preliminary cadaveric study. Sri Lanka Anatomy Journal. 1:44-52
Kruisselbrink R, Arzola C, Jackson T, et al. (2017) Ultrasound assessment of gastric volume in severely obese individuals : a validation study. B J Anesth. 118:77–82. https://doi.org/10.1093/bja/aew400
Liang CC, Wei1 TY, Chang S, et al. (2009) Bladder volume determination: two-dimensional versus three-dimensional trans vaginal ultrasound. Taiwan J Obstet Gynecol. 48:258–261. http://dx.doi.org/10.1016/S1028-4559(09)60300-4
Linguraru MG, Sandberg JK, Jones EC, et al. (2013) Assessing splenomegaly: automated volumetric analysis of the spleen. Acad Radiol. 20:675‐684. https://doi.org/ 10.1016/j.acra.2013.01.011
Maclaren J, Han Z, Vos SB, et al. (2014) Reliability of brain volume measurements : A test-retest dataset. Scientific data. 1:140037. https://doi.org/ 10.1038/sdata.2014.37
Magistroni R, Martí T. (2018) Nephrology: A review of the imaging techniques for measuring kidney and cyst volume in establishing autosomal dominant polycystic kidney disease progression. Am J Nephrol. 48:67-78. doi: 10.1159/000491022.
Mbaeri TU, Orakwe JC, Nwofor AME, et al. (2014) Ultrasound measurements of testicular volume: Comparing the three common formulas with the true testicular volume determined by water displacement. Afr J Urol. 19:69–73
Pomposelli JJ, Tongyoo A, Wald C, et al. (2012) Pomfret EA. Variability of standard liver volume estimation versus software-assisted total liver volume measurement. Liver Transplant. 18:1083–1092. https://doi.org/10.1002/lt.23461
Rasmussen SN. Determination of Organ Volume. (1979) 1st ed. Medical Imaging Techniques. Springer, Boston, MA. 75-183
Riestra-Candelaria BL, Rodríguez-Mojica W, Vázquez-Quiñones LE, et al. (2016) Ultrasound accuracy of liver length measurement with cadaveric specimens. J Diagnostic Med Sonogr. 2:12–19. https://doi.org/10.1177/8756479315621287
Sakamoto H, Saito K, Ogawa Y, et al. (2007) Testicular volume measurements using prader orchidometer versus ultrasonography in patients with infertility. Adult Urology. 69:0–4. https://doi.org/10.1016/j.urology. 2006.09.013
Sharma K, Caroli A, Quach LV, et al. (2017) Kidney volume measurement methods for clinical studies on autosomal dominant polycystic kidney disease. Plos one. 12: e0178488. https://doi.org/10.1371/journal.pone.01784882017;m:1-19
Weisstein, EW. (2020) "Prolate Spheroid" From Math World - A Wolfram Web Resource. Available at http://mathworld.wolfram.com/ProlateSpheroid.html. Updated 30 July 2020. Accessed 13 August 2020
Yetter EM, Acosta KB, Olson MC, et al. (2003) Blundell K. Estimating splenic volume : sonographic measurements correlated with helical CT determination. Am J Roentgenol. 181:1615-1620. https://doi.org/10.2214/ajr.181.6.1811615
Zapassky E, Gadot Y, Finkelstein I, et al. (2012) An ancient relation between units of length and volume based on a sphere. PLoS One. 7:e33895. https://doi.org/10.1371/journal.pone.0033895