Sperm Conjugates (Association of Several Sperm in the Epididymis) Reach Zone Fertilization in Rats, but Fertilizes Only One Sperm
Contenido principal del artículo
Resumen
Mammalian sperm con jugation phenomenon occurs both in the epididymis or post ejaculation. Sperm conjugates consist of tens to hundreds of partner sperm. The combination of sperm is found in the ejaculate of some species but it is unknown if the female tract amount reaching the área of ??fertilization (distal third of the tubes) and if the dissociation before or during interaction with the oocyte cumulus. Various mechanisms have been proposed by which the formation of these structures favor fertilization: a. increased speed of scrolling synergies with individual sperm, particularly in cases of sperm, b competition. conjugated sperm protection against the hostile environment, c. prevention of early acrosome reaction, among others. Our group described this phenomenon in rat and mouse rosettes and proposed calling them a possible associative mechanism. These conjugates consist of groups of sperm joined at their heads and with their free scourges in no less than 10 cells. They were described within the lumen of the region of the cauda epididymis, but not in more proximal sites, suggesting that sperm join together must have matured and made contact with factors of epididymal fluid. To know what the final destination of the spermatic conjugates we studied the presence of male gametes conjugate or in the female genital tract after ejaculation rat. Samples of the contents of the tubes obtained different times allowed us to observe mating post near the complex conjugates cumulus - oocyte. But only individual sperm between the cumulus cells were observed. This suggests that the conjugates after reaching sperm fertilization area are separated into individual sperm.
Citas
Bedford, J. M.; Rodger, J. C. & Breed, W. G. Why so many mammalian spermatozoa--a clue from marsupials? Proc. R. Soc. Lond. B Biol. Sci., 221(1223):221-33, 1984.
Birkhead, T. R.; Møller, A. P. & Sutherland, W. J. Why do Females Make it so Difficult for Males to Fertilize their Eggs? J. Theor. Biol., 161(1):51-60, 1993.
Broadhead, M. L.; Becerra, S. P.; Choong, P. F. & Dass, C. R. The applied biochemistry of PEDF and implications for tissue homeostasis. Growth Factors, 28(4):280-5, 2010.
Cooper, T. G.; Weydert, S.; Yeung, C. H.; Künzl, C. & Sachser, N. Maturation of epididymal spermatozoa in the nondomesticated guinea pigs Cavia aperea and Galea musteloides. J. Androl., 21(1):154-63, 2000.
Djakiew, D. & Jones, R. C. Sperm maturation, fluid transport, and secretion and absorption of protein in the epididymis of the echidna, Tachyglossus aculeatus. J. Reprod. Fertil., 68(2):445-56, 1983.
Fawcett, D. W. & Hollenberg, R. D. Changes in the acrosome of the guinea pig spermatozoa during passage through the epididymis. Z. Zellforsch. Mikrosk. Anat., 60:276-92, 1963.
Fisher, H. S. & Hoekstra, H. E. Competition drives cooperation among closely related sperm of deer mice. Nature, 463(7282):801-3, 2010.
Fornes, M. W. & Burgos, M. H. Epididymal glycoprotein involved in rat sperm association. Mol. Reprod. Dev., 38(1):43-7, 1994.
Fornes, M. W. & Burgos, M. H. Sperm association in the rat epididymis. Microsc. Electron. Biol. Celular, 14(2):115-29, 1990.
Guidobaldi, H. A.; Teves, M. E.; Uñates, D. R.; Anastasía, A. & Giojalas, L. C. Progesterone from the cumulus cells is the sperm chemoattractant secreted by the rabbit oocyte cumulus complex. PLoS One, 3(8):e3040, 2008.
Guidobaldi, H. A.; Teves, M. E.; Uñates, D. R & Giojalas, L. C. Sperm transport and retention at the fertilization site is orchestrated by a chemical guidance and oviduct movement. Reproduction, 143(5):587-96,2012.
Higginson, D. M. & Pitnick, S. Evolution of intra-ejaculate sperm interactions: do sperm cooperate? Biol. Rev. Camb. Philos. Soc., 86(1):249-70, 2011.
Hunter, R. H. F. & Wilmut, I. The rate of functional sperm transport into the oviducts of mated cows. Anim. Reprod. Sci., 5(3):167-73, 1983.
Immler, S.; Moore, H. D. M.; Breed, W. G. & Birkhead, T. R. By hook or by crook? Morphometry, competition and cooperation in rodent sperm. PLoS One, 2(1):e170,2007.
Jones, R. C.; Dacheux, J. L.; Nixon, B. & Ecroyd, H. W. Role of the epididymis in sperm competition. Asian J. Androl., 9(4):493-9, 2007.
Martan, J. & Shepherd, B. A. Spermatozoa in rouleaux in the female guinea pig genital tract. Anat. Rec., 175(3):625-9, 1973.
Monclus, M. A.; Cesari, A.; Cabrillana, M. E.; Borelli, P. V.; Vincenti, A. E.; Burgos, M. H. & Fornés, M. W. Mouse sperm rosette: assembling during epididymal transit, in vitro disassemble, and oligosaccharide participation in the linkage material. Anat. Rec. (Hoboken), 290(7):814-24, 2007.
Monclus, M. A.; Andreina, C.; Cabrillana, M. E.; Lancellotti, T. E.; Rensetti, D. E.; Clementi, M. A.; Boarelli, P. V.; Vincenti, A. E. & Fornés, M. W. Protein fraction isolated from epididymal fluid re-associates sperm in vitro: possible role of serpins in rat rosettes assembly. Mol. Reprod. Dev., 77(5):410-9, 2010.
Moore, H.; Dvoráková, K.; Jenkins, N. & Breed, W. Exceptional sperm cooperation in the wood mouse. Nature, 418(6894):174-7, 2002.
Moore, H. D. & Taggart, D. A. Sperm pairing in the opossum increases the efficiency of sperm movement in a viscous environment. Biol. Reprod., 52(4):947-53, 1995.
Overstreet, J. W. & Cooper, G. W. Sperm transport in the reproductive tract of the female rabbit: II. Biol. Reprod., 19(1):115-32, 1978.
Phillips, D. M. & Bedford, J. M. Sperm-sperm associations in the loris epididymis. Gamete Res., 18(1):17-25, 1987.
Pietrobon, E. O.; Soria, M.; Domínguez, L. A.; Monclus, Mde. L. & Fornés, M. W. Simultaneous activation of PLA2 and PLC are required to promote acrosomal reaction stimulated by progesterone via G-proteins. Mol. Reprod. Dev., 70(1):58-63, 2005.
Pitnick, S.; Hosken, D. J.; Birkhead, T. R. Sperm morphological diversity. In: Birkhead, T. R.; Hosken, D. J. & Pitnick, S. (Eds.). Sperm Biology, an evolutionary perspective. San Diego, Academic Press, 2009. pp.130-1.
Radigue, C.; Soufir, J. C; Couvillers, M. L.; Dantec, M. C . & Folliot, R. Early effects of gossypol on the testis and epididymis in the rat. Reprod. Nutr. Dev., 28(5):1329- 38, 1988.
Simeone, F. A. & Young, W. C. A study of the function of the epididymis. IV. The fate of non-ejaculated spermatozoa in the genital tract of the male Guinea pig. J. Exp. Biol., 28:163-75, 1931.
Suarez, S. S.; Brockman, K. & Lefebvre, R. Distribution of mucus and sperm in bovine oviducts after artificial insemination: the physical environment of the oviductal sperm reservoir. Biol. Reprod., 56(2):447-53, 1997.
Suarez, S. S. Formation of a reservoir of sperm in the oviduct. Reprod. Domest. Anim., 37(3):140-3, 2002.
Taggart, D. A.; Johnson, J. L.; O´Brien, H. P. & Moore, H. D. Why do spermatozoa of American marsupials form pairs? A clue from the analysis of sperm-pairing in the epididymis of the grey short-tailed opossum, Monodelphis domestica. Anat. Rec., 236(3):465-78,1993.
Teves, M. E.; Barbano, F.; Guidobaldi, H. A.; Sanchez, R.; Miska, W. & Giojalas, L. C. Progesterone at the picomolar range is a chemoattractant for mammalian spermatozoa. Fertil. Steril., 86(3):745-9, 2006.
Töpfer-Petersen, E.; Wagner, A.; Friedrich, J.; Petrunkina, A., Ekhlasi-Hundrieser, M.; Waberski D. & Drommer, W. Function of the mammalian oviductal sperm reservoir. J. Exp. Zool. 292(2):210-5, 2002.
Tung, K. S.; Okada, A. & Yanagimachi, R. Sperm autoantigens and fertilization. I. Sperm autoantigens and fertilization. I. Effects of antisperm autoantibodies on Rouleaux formation, viability, and acrosome reaction of guinea pig spermatozoa. Biol. Reprod., 23(4):877-86, 1980.
Uñates, D. R.; Guidobaldi, H. A.; Gatica, L. V.; Cubilla, M. A.; Teves, M. E.; Moreno, A. & Giojalas, L. C. Versatile action of picomolar gradients of progesterone on different sperm subpopulations. PLoS One, 9(3):e91181, 2014.
Yanagimachi, R. & Mahi, C. A. The sperm acrosome reaction and fertilization in the guinea-pig: a study in vivo. J. Reprod. Fertil., 46(1):49-54, 1976.