Nanotechnology in Preclinical and Clinical Drug Development
Contenido principal del artículo
Resumen
Nanotechnology is generating a strong impact in preclinical and clinical drug development. The diversity of current nanotechnologies offers a broad platform used to enhance the performance of drug discovery screening, to develop sensitive and specific methods used to unveil the mechanisms behind the actions of drugs, to determine the function and interaction between molecules, and to study the physiological and pathological changes of cellular components. In addition, advancements in nanobiotechnology have led to the design of new nanomaterial-based drug candidates that present a novel approach to medical diagnostics and therapeutics. The biocompatible nanoarchitecture of the marketed nanocarriers used for drug delivery has increased the solubility and effectiveness of classical drugs, and has provided the technology required for the targeted delivery of encapsulated tissue-organ specific therapeutics. Because of its effect on drug development, nanotechnology serves as the foundation for many future medical endeavors. This article provides an overview of the basics of nanobiotechnology, and discusses its applications in drug discovery, design, and delivery systems.
Citas
Alexis, F.; Pridgen, E.; Molnar, L. K. & Farokhzad, O. C. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol. Pharm., 5:505-15, 2008.
Andersen, E. S.; Dong, M.; Nielsen, M. M.; Jahn, K.; Subramani, R.; Mamdouh, W.; Golas, M. M.; Sander, B.; Stark, H.; Oliveira, C. L.; Pedersen, J. S.; Birkedal, V.; Besenbacher, F.; Gothelf, K. V. & Kjems, J. Selfassembly of a nanoscale DNA box with a controllable lid. Nature, 459:73-6, 2009.
Asane, G. S.; Nirmal, S. A.; Rasal, K. B.; Naik, A. A.; Mahadik, M. S. & Rao, Y. M. Polymers for mucoadhesive drug delivery system: a current status. Drug. Dev. Ind. Pharm., 34:1246-66, 2008.
Baca, H. K.; Carnes, E.; Singh, S.; Ashley, C.; Lopez, D. & Brinker, C. J. Cell-directed assembly of bio/nano interfaces-a new scheme for cell immobilization. Acc. Chem. Res., 40:836-45, 2007.
Bakry, R.; Vallant, R. M.; Najam-ul-Haq, M.; Rainer, M.; Szabo, Z.; Huck, C. W. & Bonn, G. K. Medicinal applications of fullerenes. Int. J. Nanomedicine, 2:639-49, 2007.
Balmayor, E. R.; Tuzlakoglu, K.; Azevedo, H. S. & Reis, R. L. Preparation and characterization of starch-poly-epsiloncaprolactone microparticles incorporating bioactive agents for drug delivery and tissue engineering applications. Acta Biomater., 5:1035-45, 2009.
Barbu, E.; Molnar, E.; Tsibouklis, J. & Gorecki, D. C. The potential for nanoparticle-based drug delivery to the brain: overcoming the blood-brain barrier. Expert Opin. Drug Deliv., 6:553-65, 2009.
Bawarski, W. E.; Chidlowsky, E.; Bharali, D. J. & Mousa, S.A. Emerging nanopharmaceuticals. Nanomedicine, 4:273-82, 2008.
Bedrov, D.; Smith, G. D.; Davande, H. & Li, L. Passive transport of C60 fullerenes through a lipid membrane: a molecular dynamics simulation study. J. Phys. Chem. B, 112:2078-84, 2008.
Benoit, M.; Gabriel, D.; Gerisch, G. & Gaub, H. E. Discrete interactions in cell adhesion measured by singlemolecule force spectroscopy. Nat. Cell Biol., 2:313- 7, 2000.
Bertram, J. P.; Jay, S. M.; Hynes, S. R.; Robinson, R.; Criscione, J. M. & Lavik, E. B. Functionalized poly(lactic-co-glycolic acid) enhances drug delivery and provides chemical moieties for surface engineering while preserving biocompatibility. Acta Biomater., 5(8):2860-71, 2009.
Biesterfeld, S.; Farokhzad, F.; Kluppel, D.; Schneider, S. & Hufnagl, P. Improvement of breast cancer prognostication using cell kinetic-based silverstainable nucleolar organizer region quantification of the MIB-1 positive tumor cell compartment. Virchows Arch., 438:478-84, 2001.
Bruce, P. G.; Scrosati, B. & Tarascon, J. M. Nanomaterials for rechargeable lithium batteries. Angew Chem. Int. Ed. Engl., 47:2930-46, 2008.
Chan, J. M.; Zhang, L.; Yuet, K. P.; Liao, G.; Rhee, J. W.; Langer, R. & Farokhzad, O. C. PLGA-lecithin-PEG core-shell nanoparticles for controlled drug delivery. Biomaterials, 30:1627-34, 2009.
Chen, L. Y. Monitoring conformational changes of immobilized RNase A and lysozyme in reductive unfolding by surface plasmon resonance. Anal. Chim. Acta, 631:96-101, 2009.
Chen, H. & Li, J. Nanotechnology: moving from microarrays toward nanoarrays. Methods Mol. Biol., 381:411-36, 2007.
Chen, H.; Gao, J.; Wang, F. & Liang, W. Preparation, characterization and pharmacokinetics of liposomes-encapsulated cyclodextrins inclusion complexes for hydrophobic drugs. Drug Deliv., 14:201-8, 2007.
Chen, S.; Yu, Q.; Li, L.; Boozer, C. L.; Homola, J.; Yee, S. S. & Jiang, S. Detecting the adsorption of dye molecules in homogeneous poly(propylene imine) dendrimer monolayers by surface plasmon resonance sensor. J. Am. Chem. Soc., 124:3395-401, 2002.
Chien, F. T. & van Noort, J. 10 years of tension on chromatin: results from single molecule force spectroscopy. Curr. Pharm. Biotechnol., 10:474- 85, 2009.
Choe, Y. H.; Conover, C. D.; Wu, D.; Royzen, M.; Gervacio, Y.; Borowski, V.; Mehlig, M. & Greenwald, R. B. Anticancer drug delivery systems: multiloaded N4-acyl poly(ethylene glycol) prodrugs of ara-C. II. Efficacy in ascites and solid tumors. J. Control Release, 79:55-70, 2002.
Cloninger, M. J. Biological applications of dendrimers. Curr. Opin. Chem. Biol., 6:742-8, 2002.
Corchero, J. L. & Villaverde, A. Biomedical applications of distally controlled magnetic nanoparticles. Trends Biotechnol., 27:468-76, 2009.
Cormode, D. P.; Skajaa, T.; Fayad, Z. A. & Mulder, W. J. Nanotechnology in medical imaging: probe design and applications. Arterioscler. Thromb. Vasc. Biol., 29:992-1000, 2009.
Craig, C. Current treatment approaches for neoplastic meningitis: nursing management of patients receiving intrathecal DepoCyt. Oncol. Nurs. Forum, 27:1225-30; quiz 1231-2, 2000.
Creutz, C. E. & Edwardson, J. M. Organization and synergistic binding of copine I and annexin A1 on supported lipid bilayers observed by atomic force microscopy. Biochim. Biophys. Acta, 1788(9):1950-61, 2009.
Cruz Enriquez, A.; Rivero Espejel, I. A.; Andres Garcia, E. & Diaz-Garcia, M. E. Enhanced resonance light scattering properties of gold nanoparticles due to cooperative binding. Anal. Bioanal. Chem., 391:807-15, 2008.
Cui, Y.; Wei, Q.; Park, H. & Lieber, C. M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science, 293:1289-92, 2001.
Daniels, A. U.; Chang, M. K. & Andriano, K. P. Mechanical properties of biodegradable polymers and composites proposed for internal fixation of bone. J. Appl. Biomater., 1:57-78, 1990.
De Leebeeck, A. & Sinton, D. Ionic dispersion in nanofluidics. Electrophoresis, 27:4999-5008, 2006.
Diagaradjane, P.; Shetty, A.; Wang, J. C.; Elliott, A. M.; Schwartz, J.; Shentu, S.; Park, H. C.; Deorukhkar, A.; Stafford, R. J.; Cho, S. H.; Tunnell, J. W.; Hazle, J. D. & Krishnan, S. Modulation of in vivo tumor radiation response via gold nanoshell-mediated vascular-focused hyperthermia: characterizing an integrated antihypoxic and localized vascular disrupting targeting strategy. Nano Lett., 8:1492- 500, 2008.
Dimasi, J. A. New drug development in the United States from 1963 to 1999.
Clin. Pharmacol. Ther., 69:286- 96, 2001.
DiMasi, J. A.; Hansen, R. W. & Grabowski, H. G. The price of innovation: new estimates of drug development costs. J. Health Econ., 22:151-85, 2003.
Djordjevic, A.; Bogdanovic, G. & Dobric, S. Fullerenes in biomedicine. J. BUON, 11:391-404, 2006.
Dobson, J. Remote control of cellular behaviour with magnetic nanoparticles. Nat. Nanotechnol., 3:139- 43, 2008.
DOXIL approved by FDA. AIDS Patient Care, 9:306, 1995.
Duncan, R. Polymer conjugates for tumour targeting and intracytoplasmic delivery. The EPR effect as a common gateway? Pharm. Sci. Technol. Today, 2:441-9, 1999.
Edwardson, J. M. & Henderson, R. M. Atomic force microscopy and drug discovery. Drug Discov. Today, 9:64-71, 2004.
Eghtedari, M.; Liopo, A. V.; Copland, J. A.; Oraevsky, A. A. & Motamedi, M. Engineering of hetero-functional gold nanorods for the in vivo molecular targeting of breast cancer cells. Nano Lett., 9:287-91, 2009.
Eijkel, J. Nanofluidics. Anal. Bioanal. Chem., 394:383- 4, 2009.
Elie-Caille, C.; Severin, F.; Helenius, J.; Howard, J.; Muller, D. J. & Hyman, A. A. Straight GDP-tubulin protofilaments form in the presence of taxol. Curr. Biol., 17:1765-70, 2007.
Enes, R. F.; Tomé, A. C.; Cavaleiro, J. A.; Amorati, R.; Fumo, M. G.; Pedulli, G. F. & Valgimigli, L. Synthesis and antioxidant activity of [60]fullerene-BHT conjugates. Chemistry, 12:4646-53, 2006.
Farokhzad, O. C. Nanotechnology for drug delivery: the perfect partnership. Expert Opin. Drug Deliv., 5:927- 29, 2008.
Farokhzad, O. C. & Langer, R. Impact of nanotechnology on drug delivery. ACS Nano, 3:16-20, 2009.
Farokhzad, O. C.; Karp, J. M. & Langer, R. Nanoparticleaptamer bioconjugates for cancer targeting. Expert Opin. Drug Deliv., 3:311-24, 2006.
Farokhzad, O. C.; Shelley, C. S. & Arnaout, M. A. Induction of the CD11b gene during activation of the monocytic cell line U937 requires a novel nuclear factor MS-2. J. Immunol., 157:5597-605,1996.
Feldkamp, U. CANADA: Designing nucleic acid sequences for nanobiotechnology applications. J. Comput. Chem., 31(3):660-3, 2010.
Freitas, R. A. Jr. What is nanomedicine? Dis. Mon., 51:325-41, 2005.
Furtado, S.; Abramson, D.; Burrill, R.; Olivier, G.; Gourd, C.; Bubbers, E. & Mathiowitz, E. Oral delivery of insulin loaded poly(fumaric-co-sebacic) anhydride microspheres. Int. J. Pharm., 347:149-55, 2008.
Gabizon, A. A.; Tzemach, D.; Horowitz, A. T.; Shmeeda, H.; Yeh, J. & Zalipsky, S. Reduced toxicity and superior therapeutic activity of a mitomycin C lipid-based prodrug incorporated in pegylated liposomes. Clin. Cancer Res., 12:1913-20, 2006.
Gao, J.; Gu, H. & Xu, B. Multifunctional Magnetic Nanoparticles: Design, Synthesis, and Biomedical Applications. Acc. Chem. Res., 42(8):1097-107, 2009.
Gau, V. & Wong, D. Oral fluid nanosensor test (OFNASET) with advanced electrochemical-based molecular analysis platform. Ann. N. Y. Acad. Sci., 1098:401- 10, 2007.
Garcia-Manyes, S.; Bucior, I.; Ros, R.; Anselmetti, D.; Sanz, F.; Burger, M. M. & Fernàndez-Busquets, X. Proteoglycan mechanics studied by single-molecule force spectroscopy of allotypic cell adhesion glycans. J. Biol. Chem., 281:5992-9, 2006.
Garg, M. & Jain, N. K. Reduced hematopoietic toxicity, enhanced cellular uptake and altered pharmacokinetics of azidothymidine loaded galactosylated liposomes. J. Drug Target, 14:1-11, 2006.
Gaucher, G.; Dufresne, M. H.; Sant, V. P.; Kang, N.; Maysinger, D. & Leroux, J. C. Block copolymer micelles: preparation, characterization and application in drug delivery. J. Control Release, 109:169-88, 2005.
Gilbert, Y.; Deghorain, M.; Wang, L.; Xu, B.; Pollheimer, P. D.; Gruber, H. J.; Errington, J.; Hallet, B.; Haulot, X.; Verbelen, C.; Hols, P. & Dufrêne, Y. F. Singlemolecule force spectroscopy and imaging of the vancomycin/D-Ala-D-Ala interaction. Nano Lett., 7:796-801, 2007.
Gilchrist, R. K.; Medal, R.; Shorey, W. D.; Hanselman, R. C.; Parrott J. C. & Taylor, C. B. Selective inductive heating of lymph nodes. Ann. Surg., 146:596-606, 1957.
Gillies, E. R. & Frechet, J. M. Dendrimers and dendritic polymers in drug delivery. Drug Discov. Today, 10:35-43, 2005. Gimeno, M. J.; García-Esteo, F.; García-Honduvilla, N.; Bellón, J. M.; Buján, J. & Román, J. S. Polymer controlled drug delivery system for growth hormone. Drug Deliv., 9:233-7, 2002.
Goldberger, J.; Fan, R. & Yang, P. Inorganic nanotubes: a novel platform for nanofluidics. Acc. Chem. Res., 39:239-48, 2006.
Govender, T.; Ojewole, E.; Naidoo, P. & Mackraj, I. Polymeric nanoparticles for enhancing antiretroviral drug therapy. Drug Deliv., 15:493-501, 2008.
Guillaudeu, S. J.; Fox, M. E.; Haidar, Y. M.; Dy, E. E.; Szoka, F. C. & Fréchet, J. M. PEGylated dendrimers with core functionality for biological applications. Bioconjug. Chem., 19:461-9, 2008.
Greish, K. Enhanced permeability and retention of macromolecular drugs in solid tumors: a royal gate for targeted anticancer nanomedicines. J. Drug Target, 15:457-64, 2007.
Gregoriadis, G. Liposomes as a drug delivery system: optimization studies. Adv. Exp. Med. Biol., 238:151- 9, 1988.
Gu, F.; Langer, R. & Farokhzad, O. C. Formulation/ Preparation of functionalized nanoparticles for in vivo targeted drug delivery. Methods Mol. Biol., 544:589- 98, 2009.
Gu, F.; Zhang, L.; Teply, B. A.; Mann, N.; Wang, A.; Radovic-Moreno, A. F.; Langer, R. & Farokhzad, O. C. Precise engineering of targeted nanoparticles by using self-assembled biointegrated block copolymers. Proc. Natl. Acad. Sci. U S A, 105:2586-91, 2008.
Haes, A. J.; Chang, L.; Klein, W. L. & Van Duyne, R. P. Detection of a biomarker for Alzheimer's disease from synthetic and clinical samples using a nanoscale optical biosensor. J. Am. Chem. Soc., 127:2264-71, 2005.
Haes, A. J. & Van Duyne, R. P. A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. J. Am. Chem. Soc., 124:10596-604, 2002.
Hickey, T.; Kreutzer, D.; Burgess, D. J. & Moussy, F. Dexamethasone/PLGA microspheres for continuous delivery of an anti-inflammatory drug for implantable medical devices. Biomaterials, 23:1649-56, 2002.
Hinterdorfer, P. & Dufrene, Y. F. Detection and localization of single molecular recognition events using atomic force microscopy. Nat. Methods, 3:347-55, 2006.
Hong, J.; Edel, J. B. & deMello, A. J. Micro- and nanofluidic systems for high-throughput biological screening. Drug Discov. Today, 14:134-46, 2009.
Huang, Y. F.; Sefah, K.; Bamrungsap, S.; Chang, H. T. & Tan, W. Selective photothermal therapy for mixed cancer cells using aptamer-conjugated nanorods. Langmuir, 24:11860-5, 2008.
Hughes, B. 2008 FDA drug approvals. Nat. Rev. Drug Discov., 8:93-6, 2009.
Hughes, S.; McBain, S.; Dobson, J. & El Haj, A. J. Selective activation of mechanosensitive ion channels using magnetic particles. J. R. Soc. Interface, 5:855- 63, 2008.
Initiative, N. N. Research and development leading to a revolution in technology and industry Supplement to the President’s 2010 Budget, 2009.
Ishihara, T.; Kubota, T.; Choi, T. & Higaki, M. Treatment of experimental arthritis with stealth-type polymeric nanoparticles encapsulating betamethasone phosphate. J. Pharmacol. Exp. Ther., 329:412-17, 2009.
Jain, K. K. The role of nanobiotechnology in drug discovery. Drug Discov. Today, 10:1435-42, 2005.
Jain, K. K. Nanomedicine: application of nanobiotechnology in medical practice. Med. Princ. Pract., 17:89-101, 2008.
Jain, T. K.; Reddy, M. K.; Morales, M. A.; Leslie-Pelecky, D. L. & Labhasetwar, V. Biodistribution, clearance, and biocompatibility of iron oxide magnetic nanoparticles in rats. Mol. Pharm., 5:316-27, 2008.
Jain, K. K. Role of nanobiotechnology in the development of personalized medicine. Nanomed., 4:249-52, 2009.
Jain, K. K. Personalized medicine. Curr. Opin. Mol. Ther., 4:548-58, 2002.
Jain, K. K. Applications of biochips: from diagnostics to personalized medicine. Curr. Opin. Drug Discov. Devel., 7:285-9, 2004.
Ji, H.; Yang Z, Jiang W, Geng C, Gong M, Xiao H, Wang Z, Cheng L. Antiviral activity of nano carbon fullerene lipidosome against influenza virus in vitro. J Huazhong Univ Sci Technolog Med Sci 28: 243-246 (2008).
Jin, A. J.; Prasad, K.; Smith, P. D.; Lafer, E. M. & Nossal, R. Measuring the elasticity of clathrin-coated vesicles via atomic force microscopy. Biophys. J., 90:3333- 44, 2006.
Jones, M. & Leroux, J. Polymeric micelles - a new generation of colloidal drug carriers. Eur. J. Pharm. Biopharm., 48:101-11, 1999.
Jun, Y. W.; Lee, J. H. & Cheon, J. Chemical design of nanoparticle probes for high-performance magnetic resonance imaging. Angew Chem. Int. Ed. Engl., 47:5122-35, 2008.
Jung, M.; Oh, B. K. & Choi, J. W. Fabrication of Au nanodots with 60nm diameter on ITO glass: Towards nanobiochip using nanoporous alumina mask. Ultramicroscopy, 109:1006-10, 2009.
Johnston, S. R. & Kaye, S. Caelyx: treatment for relapsing ovarian cancer. Hosp. Med., 62:611-6, 2001.
Kanno, T.; Yamada, T.; Iwabuki, H.; Tanaka, H.; Kuroda, S.; Tanizawa, K. & Kawai, T. Size distribution measurement of vesicles by atomic force microscopy. Anal. Biochem., 309:196-9, 2002.
Karlsson, A.; Karlsson, M.; Karlsson, R.; Sott, K.; Lundqvist, A.; Tokarz, M. & Orwar, O. Nanofluidic networks based on surfactant membrane technology. Anal. Chem., 75:2529-37, 2003.
Kaul, G. & Amiji, M. Tumor-targeted gene delivery using poly(ethylene glycol)-modified gelatin nanoparticles: in vitro and in vivo studies. Pharm. Res., 22:951-61, 2005.
Ke, W.; Zhao, Y.; Huang, R.; Jiang, C. & Pei, Y. Enhanced oral bioavailability of doxorubicin in a dendrimer drug delivery system. J. Pharm. Sci., 97:2208-16, 2008.
Kersey, F. R.; Yount, W. C. & Craig, S. L. Single-molecule force spectroscopy of bimolecular reactions: system homology in the mechanical activation of ligand substitution reactions. J. Am. Chem. Soc., 128:3886-7, 2006.
Kim, S. S.; Sun Park, M.; Jeon, O.; Yong Choi, C. & Kim, B. S. Poly(lactide-co-glycolide)/hydroxyapatite composite scaffolds for bone tissue engineering. Biomaterials, 27:1399-409, 2006.
Kneipp, J., Kneipp, H., Wittig, B. & Kneipp, K. Novel optical nanosensors for probing and imaging live cells. Nanomedicine, 6(2):214-26, 2009.
Kolosnjaj, J.; Szwarc, H. & Moussa, F. Toxicity studies of fullerenes and derivatives. Adv. Exp. Med. Biol., 620:168-80, 2007.
Kruithof, M.; Chien, F. T.; Routh, A.; Logie, C.; Rhodes, D. & van Noort, J. Single-molecule force spectroscopy reveals a highly compliant helical folding for the 30- nm chromatin fiber. Nat. Struct. Mol. Biol., 16:534- 40, 2009.
Kumar, N.; Parajuli, O. & Hahm, J. I. Two-dimensionally self-arranged protein nanoarrays on diblock copolymer templates. J. Phys. Chem. B, 111:4581-7, 2007.
Kumar, M. N. & Kumar, N. Polymeric controlled drugdelivery systems: perspective issues and opportunities. Drug Dev. Ind. Pharm., 27:1-30, 2001.
Lal, S.; Clare, S. E. & Halas, N. J. Nanoshell-enabled photothermal cancer therapy: impending clinical impact. Acc. Chem. Res., 41:1842-51, 2008.
Law, M.; Kind, H.; Messer, B.; Kim, F. & Yang, P. Photochemical sensing of NO(2) with SnO(2) nanoribbon nanosensors at room temperature. Angew Chem. Int. Ed. Engl., 41:2405-8, 2002.
Lee, S.; Lee, S.; Ko, Y. H.; Jung, H.; Kim, J. D.; Song, J. M.; Choo, J.; Eo, S. K. & Kang, S. H. Quantitative analysis of human serum leptin using a nanoarray protein chip based on single-molecule sandwich immunoassay. Talanta, 78:608-12, 2009.
Lee, J. H.; Lee, K.; Moon, S. H.; Lee, Y.; Park, T. G. & Cheon, J. All-in-one target-cell-specific magnetic nanoparticles for simultaneous molecular imaging and siRNA delivery. Angew Chem. Int. Ed. Engl., 48:4174- 9, 2009.
Lee, S. M.; Chen, H.; Dettmer, C. M.; O'Halloran, T. V. & Nguyen, S. T. Polymer-caged lipsomes: a pHresponsive delivery system with high stability. J. Am. Chem. Soc., 129:15096-7, 2007.
Lee, S. M.; Chen, H.; O'Halloran, T. V. & Nguyen, S. T. "Clickable" polymer-caged nanobins as a modular drug delivery platform. J. Am. Chem. Soc., 131:9311-20, 2009.
Lehr, C. M. Biological barriers and nanomedicine--timely challenges in advanced drug delivery research. Eur. J. Pharm. Biopharm., 72:287-8, 2009.
Lee, C. C.; MacKay, J. A.; Frechet, J. M. & Szoka, F. C. Designing dendrimers for biological applications. Nat. Biotechnol., 23:1517-26, 2005.
Leonenko, Z. V.; Carnini, A. & Cramb, D. T. Supported planar bilayer formation by vesicle fusion: the interaction of phospholipid vesicles with surfaces and the effect of gramicidin on bilayer properties using atomic force microscopy. Biochim. Biophys. Acta, 1509:131-47, 2000.
Liong, M.; Lu, J.; Kovochich, M.; Xia, T.; Ruehm, S. G.; Nel, A. E.; Tamanoi, F. & Zink, J. I. Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano, 2:889-96, 2008.
Liu, Q.; Cai, C. & Dong, C. M. Poly(L-lactide)-bpoly(ethylene oxide) copolymers with different arms: hydrophilicity, biodegradable nanoparticles, in vitro degradation, and drug-release behavior. J. Biomed. Mater. Res. A, 88:990-9, 2009.
Lowery, A. R.; Gobin, A. M.; Day, E. S.; Halas, N. J. & West, J. L. Immunonanoshells for targeted photothermal ablation of tumor cells. Int. J. Nanomedicine, 1:149-54, 2006.
Marchesan, S.; Da Ros, T.; Spalluto, G.; Balzarini, J. & Prato, M. Anti-HIV properties of cationic fullerene derivatives. Bioorg. Med. Chem. Lett., 15:3615-8, 2005.
Maheshwari, G.; Brown, G.; Lauffenburger, D. A.; Wells, A. & Griffith, L. G. Cell adhesion and motility depend on nanoscale RGD clustering. J. Cell Sci., 113(Pt. 10):1677-86, 2000.
Mannion, J. T. & Craighead, H. G. Nanofluidic structures for single biomolecule fluorescent detection. Biopolymers, 85:131-43, 2007.
Mannix, R. J.; Kumar, S.; Cassiola, F.; Montoya-Zavala, M.; Feinstein, E.; Prentiss, M. & Ingber, D. E. Nanomagnetic actuation of receptor-mediated signal transduction. Nat. Nanotechnol., 3:36-40, 2008.
Mao, S. & Chen, X. Selected nanotechnologies for renewable energy applications. Int. J. Energy Res., 31:619-36, 2007.
Martin, C. R. & Kohli, P. The emerging field of nanotube biotechnology. Nat. Rev. Drug Discov., 2:29-37, 2003.
Matsumura, Y. & Maeda, H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res., 46:6387-92, 1986.
Medzhidova, M. G.; Abdullaeva, M. V.; Fedorova, N. E.; Romanova, V. S. & Kushch, A. A. In vitro antiviral activity of fullerene amino acid derivatives in cytomegalovirus infection. Antibiot. Khimioter., 49:13-20, 2004.
Miao, L. F.; Yang, J.; Huang, C. L.; Song, C. X.; Zeng, Y. J.; Chen, L. F. & Zhu, W. L. Rapamycin-loaded poly (lactic-co-glycolic) acid nanoparticles for intraarterial local drug delivery: preparation, characterization, and in vitro/in vivo release. Zhongguo Yi Xue Ke Xue Yuan Xue Bao, 30:491-7, 2008.
Min, Y.; Akbulut, M.; Kristiansen, K.; Golan, Y. & Israelachvili, J. The role of interparticle and external forces in nanoparticle assembly. Nat. Mater., 7:527- 38, 2008.
Mingeot-Leclercq, M. P.; Deleu, M., Brasseur, R. & Dufrene, Y. F. Atomic force microscopy of supported lipid bilayers. Nat. Protoc., 3:1654-9, 2008.
Mitchell, G.; Lamontagne, C. A.; Lebel, R.; Grandbois,M. & Malouin, F. Single-molecule dynamic force spectroscopy of the fibronectin-heparin interaction. Biochem. Biophys. Res. Commun., 364:595-600, 2007.
Morris, M. & Watkins, S. M. Focused metabolomic profiling in the drug development process: advances from lipid profiling. Curr. Opin. Chem. Biol., 9:407- 12, 2005.
Motoyama, J.; Hakata, T.; Kato, R.; Yamashita, N.; Morino, T.; Kobayashi, T. & Honda, H. Size dependent heat generation of magnetite nanoparticles under AC magnetic field for cancer therapy. Biomagn. Res. Technol., 6:4, 2008.
Mrozek, E.; Rhoades, C. A.; Allen, J.; Hade, E. M. & Shapiro, C. L. Phase I trial of liposomal encapsulated doxorubicin (Myocet; D-99) and weekly docetaxel in advanced breast cancer patients. Ann. Oncol., 16:1087-93, 2005.
Muller, D. J. Out and in: simplifying membrane protein studies by AFM. Biophys. J., 91:3133-4, 2006.
Muller, D. J. & Dufrene, Y. F. Atomic force microscopy as a multifunctional molecular toolbox in nanobiotechnology. Nat. Nanotechnol., 3:261-9, 2008.
Nakamura, E. & Isobe, H. Functionalized fullerenes in water. The first 10 years of their chemistry, biology, and nanoscience. Acc. Chem. Res., 36:807-15, 2003.
Nel, A. E.; Mädler, L.; Velegol, D.; Xia, T.; Hoek, E. M.; Somasundaran, P.; Klaessig, F.; Castranova, V. & Thompson, M. Understanding biophysicochemical interactions at the nano-bio interface. Nat. Mater., 8:543-57, 2009.
Nelson, M. A.; Domann, F. E.; Bowden, G. T.; Hooser, S. B.; Fernando, Q. & Carter, D. E. Effects of acute and subchronic exposure of topically applied fullerene extracts on the mouse skin. Toxicol. Ind. Health, 9:623-30, 1993.
Newman, M. S.; Colbern, G. T.; Working, P. K.; Engbers, C. & Amantea, M. A. Comparative pharmacokinetics, tissue distribution, and therapeutic effectiveness of cisplatin encapsulated in long-circulating, pegylated liposomes (SPI-077) in tumor-bearing mice. Cancer Chemother. Pharmacol., 43:1-7, 1999.
Newman, K. D. & McBurney, M. W. Poly(D,L lactic-coglycolic acid) microspheres as biodegradable microcarriers for pluripotent stem cells. Biomaterials, 25:5763-71, 2004.
No authors listed. Photodynamic therapy with verteporfin (Visudyne) for macular degeneration. Med. Lett. Drugs Ther., 42:81-2, 2000.
No authors listed. Nanomedicine: a matter of rhetoric? Nat. Mater., 5:243, 2006.
Obare, S. O. & Meyer, G. J. Nanostructured materials for environmental remediation of organic contaminants in water. J. Environ. Sci. Health A Tox. Hazard Subst. Environ. Eng., 39:2549-82, 2004.
O'Hagan, D. T.; Singh, M. & Ulmer, J. B. Microparticlebased technologies for vaccines. Methods, 40:10- 9, 2006.
Oreopoulos, J. & Yip, C. M. Combinatorial microscopy for the study of protein-membrane interactions in supported lipid bilayers: Order parameter measurements by combined polarized TIRFM/AFM. J. Struct. Biol., 168(1):21-36, 2009.
Oyelere, A. K.; Chen, P. C.; Huang, X.; El-Sayed, I. H. & El-Sayed, M. A. Peptide-conjugated gold nanorods for nuclear targeting. Bioconjug. Chem., 18:1490- 7, 2007.
Oyewumi, M. O.; Yokel, R. A.; Jay, M.; Coakley, T. & Mumper, R. J. Comparison of cell uptake, biodistribution and tumor retention of folate-coated and PEG-coated gadolinium nanoparticles in tumorbearing mice. J. Control Release, 95:613-26, 2004.
Pan, B.; Cui, D.; Xu, P.; Ozkan, C.; Feng, G.; Ozkan, M.; Huang, T.; Chu, B.; Li, Q.; He, R. & Hu, G. Synthesis and characterization of polyamidoamine dendrimer-coated multi-walled carbon nanotubes and their application in gene delivery systems. Nanotechnology, 20:125101, 2009.
Pantarotto, D.; Briand, J. P.; Prato, M. & Bianco, A. Translocation of bioactive peptides across cell membranes by carbon nanotubes. Chem. Commun. (Camb.), (1):16-7, 2004.
Pantarotto, D.; Partidos, C. D.; Graff, R.; Hoebeke, J.; Briand, J. P.; Prato, M. & Bianco, A. Synthesis, structural characterization, and immunological properties of carbon nanotubes functionalized with peptides. J. Am. Chem. Soc., 125:6160-4, 2003.
Park, E. K.; Kim, S. Y.; Lee, S. B. & Lee, Y. M. Folateconjugated methoxy poly(ethylene glycol)/ poly(epsilon-caprolactone) amphiphilic block copolymeric micelles for tumor-targeted drug delivery. J. Control Release, 109:158-68, 2005.
Parveen, S. & Sahoo, S. K. Polymeric nanoparticles for cancer therapy. J. Drug. Target, 16:108-23, 2008.
Patil, Y. & Panyam, J. Polymeric nanoparticles for siRNA delivery and gene silencing. Int. J. Pharm., 367:195- 203, 2009.
Patil, M. L.; Zhang, M.; Taratula, O.; Garbuzenko, O. B.; He, H. & Minko, T. Internally cationic polyamidoamine PAMAM-OH dendrimers for siRNA delivery: effect of the degree of quaternization and cancer targeting. Biomacromolecules, 10:258-66, 2009.
Patil, M. L.; Zhang, M.; Betigeri, S.; Taratula, O.; He, H. & Minko, T. Surface-modified and internally cationic polyamidoamine dendrimers for efficient siRNA delivery. Bioconjug. Chem., 19:1396-403, 2008.
Peer, D.; Karp, J. M.; Hong, S.; Farokhzad, O. C.; Margalit, R. & Langer, R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol., 2:751-60, 2007.
Pillai, O. & Panchagnula, R. Polymers in drug delivery. Curr. Opin. Chem. Biol., 5:447-51, 2001.
Poletti, P.; Bettini, A. C.; Caremoli, E. R.; Labianca, R. & Tondini, C. Liposomal-encapsulated doxorubicin (Myocet; D-99) and vinorelbine in previously treated metastatic breast cancer patients: a feasibility study. Tumori, 94:686-90, 2008.
Porche, D. J. Liposomal doxorubicin (Doxil). J. Assoc. Nurses AIDS Care, 7:55-9, 1996.
Powell, T.; Tran, P.; Kim, K. & Yoon, J. J. Size-dependent self-assembly of submicron/nano beads–protein conjugates for construction of a protein nanoarray. Mater. Sci. Eng. C Mater. Biol. Appl., 29(8):2459- 2463, 2009.
Prato, M.; Kostarelos, K. & Bianco, A. Functionalized carbon nanotubes in drug design and discovery. Acc. Chem. Res., 41:60-8, 2008.
Ramakrishnan, M.; Kandimalla, K. K.; Wengenack, T. M.; Howell, K. G. & Poduslo, J. F. Surface Plasmon Resonance Binding Kinetics of Alzheimer's Disease Amyloid Peptide Capturing- and Plaque BindingMonoclonal Antibodies. Biochemistry, 48(43):10405- 15, 2009.
Ratto, F.; Matteini, P.; Rossi, F.; Menabuoni, L.; Tiwari, N.; Kulkarni, S. K. & Pini, R. Photothermal effects in connective tissues mediated by laser-activated gold nanorods. Nanomedicine, 5:143-51, 2009.
Richardson, C. F.; Schuster, D. I. & Wilson, S. R. Synthesis and characterization of water-soluble amino fullerene derivatives. Org. Lett., 2:1011-4, 2000.
Riehemann, K.; Schneider, S. W.; Luger, T. A.; Godin,B.; Ferrari, M. & Fuchs, H. Nanomedicine--challenge and perspectives. Angew Chem. Int. Ed. Engl., 48:872-97, 2009.
Ros, R.; Eckel, R.; Bartels, F.; Sischka, A.; Baumgarth, B.; Wilking, S. D., Pühler, A.; Sewald, N.; Becker, A. & Anselmetti, D. Single molecule force spectroscopy on ligand-DNA complexes: from molecular binding mechanisms to biosensor applications. J. Biotechnol., 112:5-12, 2004.
Rosenthal, E.; Poizot-Martin, I.; Saint-Marc, T.; Spano, J. P. & Cacoub, P. Phase IV study of liposomal daunorubicin (DaunoXome) in AIDS-related Kaposi sarcoma. Am. J. Clin. Oncol., 25:57-9, 2002.
Roses, A. D. Pharmacogenetics in drug discovery and development: a translational perspective. Nat. Rev. Drug Discov., 7:807-17, 2008.
Rotsch, C. & Radmacher, M. Drug-induced changes of cytoskeletal structure and mechanics in fibroblasts: an atomic force microscopy study. Biophys. J., 78:520-35, 2000.
Rusmini, F.; Zhong, Z. & Fei jen, J. Protein immobilization strategies for protein biochips. Biomacromolecules, 8:1775-89, 2007.
Sakamoto, S.; Kabe, Y.; Hatakeyama, M.; Yamaguchi, Y. & Handa, H. Development and application of highperformance affinity beads: toward chemical biology anddrug discovery. Chem. Rec., 9:66-85, 2009.
Salvador-Morales, C.; Zhang, L.; Langer, R. & Farokhzad, O. C. Immunocompatibility properties of lipid-polymer hybrid nanoparticles with heterogeneous surface functional groups. Biomaterials, 30:2231-40, 2009.
Schonherr, H.; Rozkiewicz, D. I. & Vancso, G. J. Atomic force microscopy assisted immobilization of lipid vesicles. Langmuir, 20:7308-12, 2004.
Sharma, D.; Perisic, O.; Peng, Q.; Cao, Y.; Lam, C.; Lu, H. & Li, H. Single-molecule force spectroscopy reveals a mechanically stable protein fold and the rational tuning of its mechanical stability. Proc. Natl. Acad. Sci. U S A, 104:9278-83, 2007.
Shelley, C. S.; Farokhzad, O. C. & Arnaout, M. A. Identification of cell-specific and developmentally regulated nuclear factors that direct myeloid and lymphoid expression of the CD11a gene. Proc. Natl. Acad. Sci. U S A, 90:5364-8, 1993.
Shi, X.; Xu, L.; Yu, J. & Fang, X. Study of inhibition effect of Herceptin on interaction between Heregulin and ErbB Receptors HER3/HER2 by single-molecule force spectroscopy. Exp. Cell Res., 315(16):2847- 55, 2009.
Shi, X.; Wang, S. H.; Van Antwerp, M. E.; Chen, X. & Baker, J. R. Jr. Targeting and detecting cancer cells using spontaneously formed multifunctional dendrimer-stabilized gold nanoparticles. Analyst, 134:1373-9, 2009.
Shi, Y. & Huang, G. Recent developments of biodegradable and biocompatible materials based micro/nanoparticles for delivering macromolecular therapeutics. Crit. Rev. Ther. Drug Carrier Syst., 26:29-84, 2009.
Shin, H. C.; Alani, A. W.; Rao, D. A.; Rockich, N. C. & Kwon, G. S. Multi-drug loaded polymeric micelles for simultaneous delivery of poorly soluble anticancer drugs. J. Control Release, 140:294-300, 2009.
Sinensky, A. K. & Belcher, A. M. Label-free and highresolution protein/DNA nanoarray analysis using Kelvin probe force microscopy. Nat. Nanotechnol., 2:653-9, 2007.
Solin, S. A. Magnetic field nanosensors. Sci. Am., 291:70-7, 2004.
Soundararajan, S.; Chen, W.; Spicer, E. K.; CourtenayLuck, N. & Fernandes, D. J. The nucleolin targeting aptamer AS1411 destabilizes Bcl-2 messenger RNA in human breast cancer cells. Cancer Res., 68:2358- 65, 2008.
Staple, D. B.; Payne, S. H.; Reddin, A. L. & Kreuzer, H. J. Model for stretching and unfolding the giant multidomain muscle protein using single-molecule force spectroscopy. Phys. Rev. Lett., 101:248301, 2008.
Tamerler, C.; Oren, E. E.; Duman, M.; Venkatasubramanian, E. & Sarikaya, M. Adsorption kinetics of an engineered gold binding Peptide by surface plasmon resonance spectroscopy and a quartz crystal microbalance. Langmuir, 22:7712- 8, 2006.
Tang, N.; Du, G.; Wang, N.; Liu, C.; Hang, H. & Liang, W. Improving penetration in tumors with nanoassemblies of phospholipids and doxorubicin. J. Natl. Cancer Inst., 99:1004-15, 2007.
Tekade, A. R. & Gattani, S. G. Development and evaluation of pulsatile drug delivery system using novel polymer. Pharm. Dev. Technol., 14(4):380- 7, 2009.
Thauvin, C.; Rickling, S.; Schultz, P., Célia, H.; Meunier, S. & Mioskowski, C. Carbon nanotubes as templates for polymerized lipid assemblies. Nat. Nanotechnol., 3:743-8, 2008.
Torchilin, V. P. Nanocarriers. Pharm. Res., 24:2333-4, 2007.
Tsuji, J. S.; Maynard, A. D.; Howard, P. C.; James, J. T.; Lam, C. W.; Warheit, D. B. & Santamaria, A. B. Research strategies for safety evaluation of nanomaterials, part IV: risk assessment of nanoparticles. Toxicol. Sci., 89:42-50, 2006.
Tsukada, Y.; Hara, K.; Bando, Y.; Huang, C. C.; Kousaka, Y.; Kawashima, Y.; Morishita, R. & Tsujimoto, H. Particle size control of poly(dl-lactide-co-glycolide) nanospheres for sterile applications. Int. J. Pharm., 370:196-201, 2009.
Uhrich, K. E.; Cannizzaro, S. M.; Langer, R. S. & Shakesheff, K. M. Polymeric systems for controlled drug release. Chem. Rev., 99:3181-98, 1999.
Vo-Dinh, T. & Kasili, P. Fiber-optic nanosensors for single-cell monitoring. Anal. Bioanal. Chem., 382:918-25, 2005.
Wagner, V.; Dullaart, A.; Bock, A. K. & Zweck, A. The emerging nanomedicine landscape. Nat. Biotechnol., 24:1211-7, 2006.
Walgren, J. L. & Thompson, D. C. Application of proteomic technologies in the drug development process. Toxicol. Lett., 149:377-85, 2004.
Wang, W. U.; Chen, C.; Lin, K. H.; Fang, Y. & Lieber, C. M. Label-free detection of small-molecule-protein interactions by using nanowire nanosensors. Proc. Natl. Acad. Sci. U S A, 102:3208-12, 2005.
Wang, Y. C.; Liu, X. Q.; Sun, T. M.; Xiong, M. H. & Wang, J. Functionalized micelles from block copolymer of polyphosphoester and poly(epsilon-caprolactone) for receptor-mediated drug delivery. J. Control Release, 128:32-40, 2008.
Wingren, C. & Borrebaeck, C. A. Progress in miniaturization of protein arrays--a step closer to high-density nanoarrays. Drug Discov. Today, 12:813-9, 2007.
Xu, P.; Gullotti, E.; Tong, L.; Highley, C. B.; Errabelli, D. R.; Hasan, T.; Cheng, J. X.; Kohane, D. S. & Yeo, Y. Intracellular drug delivery by poly(lactic-co-glycolic acid) nanoparticles, revisited. Mol. Pharm., 6:190- 201, 2009.
Xuan, X. Ion separation in nanofluidics. Electrophoresis 29:3737-43 (2008). Yih, T. C. & Moudgil, V. K. Nanotechnology comes of age to trigger the third industrial revolution. Nanomedicine, 3:245, 2007.
Zhao, D. L.; Zhang, H. L.; Zeng, X. W.; Xia, Q. S. & Tang, J. T. Inductive heat property of Fe3O4/polymer composite nanoparticles in an ac magnetic field for localized hyperthermia. Biomed. Mater., 1:198-201, 2006.
Zhang, H. & Gao, S. Temozolomide/PLGA microparticles and antitumor activity against glioma C6 cancer cells in vitro. Int. J. Pharm., 329:122-8, 2007.
Zhang, C. Y.; Yeh, H. C.; Kuroki, M. T. & Wang, T. H. Single-quantum-dot-based DNA nanosensor. Nat. Mater., 4:826-31, 2005.
Zhuo, R. X.; Du, B. & Lu, Z. R. In vitro release of 5- fluorouracil with cyclic core dendritic polymer. J. Control Release, 57:249-57, 1999.