Caracterización de la histomorfología del hipocampo después del tratamiento con extracto de la raíz de R. vomitoria Rauwolfia vomitoria induce alteración del hipocampo
Contenido principal del artículo
Resumen
Rauwolfia vomitoria (RV) Afzel es una planta antipsicótica utilizada por varias comunidades africanas en el tratamiento de enfermedades psiquiátricas con buenos resultados. Las preocupaciones sobre sus efecto sobre la actividad cerebral conducen a esta investigación de su acción sobre la microestructura del hipocampo.
Materiales y métodos: Se asignaron veinticuatro ratas Wistar macho adultas de un peso medio de 200 g, en cuatro grupos (n = 6): control; 200, 300 y 400 mg / kg de peso corporal de extracto de corteza de raíz de RV, respectivamente. La administración fue una vez al día y por vía oral durante siete días. Se realizó una observación diaria de los animales hasta el día ocho, cuando fueron sacrificados después de una anestesia profunda. Cada cerebro fue procesado para estudios histológicos e inmunohistoquímicos.
Resultados: Los animales en los grupos de RV de 200, 300 y 400 mg / kg parecían generalmente apagados y somnolientos, y apenas alimentados. Su histología hipocampal mostró atrofia neuronal y cariorrexis, sin diferencia en el recuento celular, aunque el número de células piramidales disminuyó en los grupos de RV de 300 y 400 mg / kg. La enolasa específica de neuronas disminuyó en el grupo de RV de 400 mg / kg, mientras que el neurofilamento disminuyó en todos los grupos de prueba. La expresión y densidad de la proteína fibrilar ácida glial aumentó en los grupos de RV de 200 y 300 mg / kg, pero no en el grupo de RV de 400 mg / kg, todos en comparación con el grupo de control.
Conclusión: Las dosis administradas de extracto de corteza de raíz de RV en ratas Wistar adultas mostraron actividades sedantes, con cambios histopatológicos del hipocampo, que pueden no ser reversibles, lo que conduce al déficit funcional del hipocampo.
Citas
Afridi, R., Kin, J.-H., Rahman, H.M. & Suk, K.. Metabolic regulation of glial phenotypes; implications in neuron-glia interactions and neurological disorders Front. Cell. Neurosci. 14:20, 2020. https://doi.org/10.3389/fncel.2020.00020
Ajao, M.S., Imam, A., Ajibola, M.I., Abdulmumin, I., Amin, A., Adana, M.Y., Ayokunle, O. & Imam, W.A. Hippocampal-dependent spatial memory and histoarchitectural integrities of the CA regions of Wistar rats following administration of Rauwolfia vomitoria and chlorpromazine. Nig.J. Neurosci. 7(1):8-15, 2015. 7(1), 2015. 8-15
Akpanabiatu, M.I., Uboh, F.E., Ekanem, T.B., Umoh, I.B., Eyong, E.U. & Ukafia, S.O. The effect of the interaction of Rauwolfa vomitoria root bark extract with vitamin E on rats’ liver enzymes. Turk. J. Biol. 33:1890194, 2009.
https://doi.org/10.4103/1947-2714.93383
Amoateng, P., Quansah, E., Karikari, T.K., Asase, A., Osei-Safo, D., Kwami, K., Kukuia, E., Amponsah, I.K. & Nyarko, A.K. Medicinal plants used in the treatment of mental and neurological disorders in Ghana. Evidence-Based Complementary and Alternative Medicine. 2018.:8590381,2018. https://doi.org/10.1155/2018/8590381
Amole, O.O. & Onabanjo, A.O. Antipyretic effects of the extract of Rauwolfia vomitoria in rabbits. Nig J Natl Products Med. 3:77-78, 1999. https://doi.org/ 10.4314/njnpm.v3i1.11768
Ayimey, E.K., Awunyo-Vitor, D. & Gadawusu, J.K. Does radio advertisement influence sale of herbal products in Ghana? Evidence from Ho Municipality. Modern Economy. 4: 652-658, 2013. https://doi.org/10.4236/me.2013.410070
Bisong, S.A., Abuo, F.E., Udefa, A.L., Ironbar, V.E. & Bassey, G.B. Comparative effects of alkaloid and saponin fractions of rauwolfia vomitoria on social behaviour and depression in a CD1 mouse model of memory impairment. Arch Curr Res Int. 16(10):1-11, 2019. https://doi.org/10.9734/acri/2019/v16i130083
Bisong, S.A., Brown, R.E. & Osim, E.E. Comparative effects of Rauwolfia vomitoria and chlorpromazine on locomotor behaviour and anxiety in mice. J Ethnopharmacol. 132 (1):334–339, 2010.https://doi.org/10.1016/j.jep.2010.08.045
Bondan, E.F., Cardoso, C.V., Martins, M.M. & Otton, R. Memory impairments and increased GFAP expression in hippocampal astrocytes following hypercaloric diet in rats. Arquivos de NeuroPsiquiatria. 77(9): 601-608, 2019. https://doi.org/10.1590/0004-282x20190091
Bondan, E.F., Martins, M.M. & Viani, F.C. Decreased astrocytic GFAP expression in streptozotocininduced diabetes after gliotoxic lesion in the rat brainstem. Arquivos Brasileiros de Endocrinologia & Metabologia. 57(6): 431-436, 2013. https://doi.org/10.1590/s0004-27302013000600004
Burkill, H.M.. Useful plants of West Tropical Africa. 2, Families E-I. Royal Botanical Gardens Kew, pp. 636, 2002.
Chattaraj, D., Mazumder, R. & Lahiri, S. Buying behaviour of herbal cosmetics by women consumers: an exploratory study in Kolkata. Indian Journal of Marketing. 48(5), 2018. https://doi.org/10.17010/ijom/2018/v48/i5/123445
Ekong, M.B., Ekpene, U.U., Nwakanma, A.A. & Bello, E.F. The combination of the extracts of Rauwolfia vomitoria and Gongronema latifolium show protective effects on the cerebellum. Synergy. 5:29-34, 2017a. https://doi.org/10.1016/j.synres.2017.10.001
Ekong, M.B., Ekpene, U.U., Nwakanma, A.A., Eluwa, M.A. & Akpantah, A.O. Rauvolfia vomitoria Afzel. disrupts dentate gyrus cells. Indian J Exp Biol, 58:88-94, 2020.
Ekong, M.B., Ekpene, U.U., Nwakanma, A.A., Peter, A.I. & Etuknwa, B.T. Rauwolfia vomitoria and Gongronema latifolium stimulate cortical cell proliferations. Annals Bioanthropol. 4(1): 41-46, 2016c.
http://dx.doi.org/10.4067/S0717-95022015000100013.
Ekong, M.B., Ekpene, U.U., Thompson, F.E., Peter, A.I., Udoh, N.B. & Ekandem, G.J. Effects of cotreatment of Rauwolfia vomitoria and Gongronema latifolium on neurobehaviour and the neurohistology of the cerebral cortex in mice. Internet J Med Update. 10(1): 3-10, 2015b. https://doi.org/10.4314/ijmu.v10i1.2
Ekong, M.B., Ekpo, M.M., Akpanyung, E.O. & Nwaokonko, D.U. Neuroprotective effect of Moringa oleifera leaf extract on aluminium-induced temporal cortical degeneration. Metab Brain Dis. 32(5):1437–1447. 2017b. https://doi.org/10.1007/s11011-017-0011-7
Ekong, M.B., Muonagolu, J.N. & Akpan, U.B. Rauwolfia vomitoria root bark extract affects the cervical ventral horn cells of the spinal cord. Annals of Advanced Medical Sciences, 2(1):A22-A26, 2018.https://doi.org/10.21276/AAMS.192
Ekong, M.B., Peter, A.I, Edagha, I.A., Ekpene, U.U. & Friday, D.A. Rauwolfia vomitoria inhibits olfaction and modifies olfactory bulb cells. Brain Research Bulletin. 124: 206–213, 2016b. http://dx.doi.org/10.1016/j.brainresbull.2016.05.008.
Ekong, M.B., Peter, A.I. & Ekpene, U.U. Co-administration of Rauwolfia vomitoria with Gongronema latifolium or Vernonia amygdalina on spatial learning, memory, and some bio-molecules. Asian J Med Sci. 7(1): 82-87, 2016a. https://doi.org/10.3126/ajms.v7i1.11156
Ekong, M.B., Peter, A.I., Ekpene, U.U., Bassey, E.I., Eluwa, M.A., Akpanabiatu, M.I. & Ekanem, T.B. Gongronema latifolium modulates Rauwolfia vomitoria induced behavior, biochemicals, and histomorphology of the cerebral cortex. Int J Morphol. 33(1): 77-84, 2015a. http://dx.doi.org/10.4067/S0717-95022015000100013
Ekong, M.B., Peter, M.D., Peter, A.I., Eluwa, M.A., Umoh, I.U., Igiri, A.O. & Ekanem, T.B. Cerebellar neurohistology and behavioural effects of Gongronema latifolium and Rauwolfia vomitoria in mice. Metab Brain Dis. 29: 521-527, 2014. https://link.springer.com/article/10.1007/s12565-020-00527-1
Ekor M. The growing use of herbal medicines: issues relating to adverse reactions and challenges in monitoring safety. Front Pharmacol. 4: 177, 2013. https://doi.org/10.3389/fphar.2013.00177
Eluwa, M.A., Ekanem, T.B., Udoh, P.B., Ekong, M.B., Akpantah, A.O., Asuquo, O.R. & Nwakamma, A.O.. Teratogenic effects of crude ethanolic extract of root bark and leaf extract of Rauwolfia vomitoria (Apocynaceae) on Nissl substances of albino Wistar Rats Foetuses. Neurosci J. 2013, 2013b. https://doi.org/10.1155/2013/906731
Eluwa, M.A., Idumesaro, N.B., Ekong, M.B., Akpantah. A.O. & Ekanem, T.B. Effects of aqueous extract of Rauwolfia vomitoria root bark on the cytoarchitecture of the cerebellum and neurobehaviour of adult male Wistar rats. Int J Alternative Med, 6(2), 2008. https://doi.org/10.4103/jeca.jeca_35_16
Eluwa, MA., Ekanem, T.B., Udoh, P.B., Ekong, M.B., Akpantah, A.O., Asuquo, O.R. & Nwakamma, A.O. Teratogenic effects of crude ethanolic extract of root bark and leaf extract of Rauwolfia vomitoria (Apocynaceae) on the femur of albino Wistar rats foetuses. J Histol, 2013, 2013a. https://doi.org/10.1155/2013/363857
Garman, R.H. Histology of the central nervous system. Toxicol Pathol. 39: 22-35, 2011. Haque, A., Polcyn, R., Matzelle, D. & Banik, N.L. New insights into the role of neuron-specific enolase in neuro-inflammation, neurodegeneration, and neuroprotection. Brain Sci. 8(33), 2018.https://doi.org/10.3390/brainsci8020033
Ihunwo, A.O., Tembo, L.H., Dzamalala, C. The dynamics of adult neurogenesis in human hippocampus. Neural Regen Res. 11(12): 1869-1993, 2016. https://doi.org/10.4103/1673-5374.195278
Iwanaga, T., Takahashi, Y. & Fujita, T. Immunohistochemistry of neuron-specific and glial-specific proteins. Archives of Histology and Cytology. 52: S13-S24, 1989. https://doi.org/10.1679/aohc.52.Suppl_13
Iwu, M.M. & Court, W.E. Root alkaloids of Rauwolfia vomitoria Afz. Planta Medica. 32:88-99, 1977. https://doi.org/10.1055/s-0028-1097565
Kiernan, J.A. Barr’s The Human Nervous System: An Anatomical View point. 9th ed. Lippicott Williams & Wilkins. Philadelphia. Pp259-264, 2009.
Mages, B., Aleithe, S., Altmann, S., Blietz A., Nitzsche, B., Barthel, H., Horn, A.K.E., Hobusch, C., Härtig, W., Krueger, M. & Michalski, D.. Impaired neurofilament integrity and neuronal
morphology in different models of focal cerebral ischemia and human stroke tissue. Front. Cell. Neurosci. 12:161, 2018. https://doi.org/10.3389/fncel.2018.00161
Metzger, R.R., Brown, J.M., Sandoval, V., Rau, K.S., Elwan, M.A., Miller, G.W., et al. Inhibitory effect of reserpine on dopamine transporter function. Eur J Pharmacol. 456(1-3):39-43, 2002. https://doi.org/10.1016/s0014-2999(02)02647-x
Millan, M.J., Newman-Tancredi, A., Audinot, V., Cussac, D., Lejeune, F., Nicolas, J.-P., Cogé, F., Galizzi, J.P., Boutin, J.A., Rivet, J.M., Dekeyne, A. & Gobert, A. Agonist and antagonist actions of yohimbine as compared to fluparoxan at alpha(2)-adrenergic receptors (AR)s, serotonin (5-HT)(1A), 5-HT(1B), 5-HT(1D), and dopamine D(2) and D(3) receptors. Significance for the modulation of frontocortical monoamine transmission and depressive states. Synapse. 35(2):79-95, 2000.
https://doi.org/10.1002/(SICI)1098-2396(200002)35:2<79::AID-SYN1>3.0.CO;2-X
Mirowska-Guzel, D. & Balkowiec-Iskra, E. The role of monoamine oxidase in humans and its metabolism. Psychiatric Annals. 44(11):495-501, 2014 https://doi.org/10.3928/00485713-20141106-04
Molina, J., Joaquim. A., Bonamin, L.V., Martins, M.F.M., Kirsten, T.B., Cardoso, C.V., Bernardi, M.M., Bondan, E.F.. Reduced astrocytic expression of GFAP in the offspring of female rats that received hypercaloric diet.Nutr Neurosci. 1-11, 2018.
Nduohosewo, I.S. & Ekong, M.B. Murine’s amygdala microstructure and elevated plus maze activities following R. vomitoria root bark and G. latifolium leaf extracts administration. Anat Sci Int. 95:342–355, 2020.
https://doi.org/10.1007/s12565-020-00527-1
Obembe, A. Antipsychotic effects and tolerance of crude Rauwolfia vomitoria in Nigerian psychiatric patients. J Psychother Res. 8(4):214-223, 2001. https://doi.org/10.1080/1028415X.2018.1512783
Okereke, S.C., Ijeh, I. & Arunsi, U.O. Determination of bioactive constituents of Rauwolfia vomitoria Afzel (Asofeyeje) roots using gas chromatography-mass spectrometry (GC-MS) and Fourier transform infrared spectrometry (FT-IR). Afr J Pharm Pharmacol. 11(2), pp. 25-31, 2017.
Okon, K.A., Bassey, E.I., Edet, I.E. & Samuel, G.U. Neurohistological study of the interactive influence of ethanolic leaf extracts of Sida acuta and Rauvolfia vomitoria on the hippocampus of albino rats. J. Complementary Altern. Med. Res. 10(1):31-36, 2020. https://doi.org/10.9734/jocamr/2020/v10i130155
Perez, S.M. & Lodge, D.J. Convergent inputs from the hippocampus and thalamus to the nucleus accumbens regulate dopamine neuron activity. J Neurosci. 38(50):10607-10618, 2017. https://doi.org/10.1523/JNEUROSCI.2629-16.2018
Strayer, D.S. & Rubin, E. Cell injury. In: Rubin E, Reisner HM. edited. Essentials of Rubin’s Pathology, fifth ed. Lippincott Williams & Wilkins, Baltimore. 2009.
Trautz, F., Franke, H., Bohnert, S., Hammer, N., Muller, W., Stassart, R., Tse, R., Zwirner, J., Dreᵝler J. & Ondruschka, B. Survival-time dependent increase in neuronal IL-6 and astroglial GFAP experession in fatally injured human brain tissue. Scientific Reports. 9:11771, 2019. https://doi.org/10.1103/PhysRevA.82.062902
Welz, A.W., Emberger-Klein, A. & Menrad, K.. Why people use herbal medicine: insights from a focus-group study in Germany. BMC Complementary and Alternative Medicine. 18:92, 2018.
Yang, Z. & Wang, K.K.W. Glial fibrillary acidic protein: from intermediate filament assembly and gliosis to neurobiomarker. Trends Neurosci. 38(6):364-374, 2015. https://doi.org/10.1016/j.tins.2015.04.003
Yardimoğlu, M., İlbay, G., Dalçik, C., Dalçik, H., Sahi˙n, D. & Ateş, N Immunocytochemistry of Neuron specific enolase (nse) in the rat brain after single and repeated epileptic seizures, Int J Neurosci. 118:7, 981-993, 2008. https://doi.org/10.1080/00207450701769232
Yu, L., Jiang, X., Liao, M., Ma, R. & Yu, T. Antidepressant-like effect of tetramethylpyrazine in mice and rats. Neurosci. Med., 2: 142-148, 2011. https://doi.org/10.4236/nm.2011.22020