Factors and Mechanisms Involved in Eating Behavior: a Current Status at Molecular Biology

Factors and Mechanisms Involved in Eating Behavior: a Current Status at Molecular Biology

Main Article Content

Bélgica Vásquez
Mario Cantín


By studying the human genome and advances in molecular biology, currently can predict interactions between the genome and food components in order to obtain information about the role of diet in maintaining health and in the prevention, initiation, development and progression or severity of a disease like obesity. The aim of this review was to present the current understanding of the factors that normally regulate eating behavior alteration, and the mechanisms involved and associated with molecular biology. About 42 genes related to the regulation of feeding, expressing at the nucleus accumbens, ventral tegmental area, nucleus of the solitary tract, the lateral hypothalamus, arcuate nucleus, paraventricular, ventromedial and dorsomedial hypothalamus. There are specific brain mechanisms that regulate hunger and satiety, which would be in constant interaction with mechanisms known as "wanting" and "liking" circuits modulated by reward, pleasure and addiction. The phenotypic expression of eating behavior is complex by genetic variability, whose behavior is defined by the interaction of genetic condition (innate), environmental experience and learning (acquired characteristics), which structured eating behavior. Altering the genes and circuits involved would be involved as a cause in eating disorders.


Beltrán-Miranda, C. P.; López, A. M.; Navarro, M. M.; Ramos, I. M. L.; Lucía Stella Tamayo Acevedo4, Ma. Claudia Castañeda-Saucedo & Valderrama, C. M. L. Relación de la nutrigenómica con el comportamiento alimentario. Rev. Mex. Investig. Psicol., 4:22-33, 2012.

Berridge, K. C. & Kringelbach, M. L Affective neuroscience of pleasure: reward in humans and animals. Psychopharmacology, 199:457-80, 2008.

Berridge, K. C.; Ho, C.; Richard, J. M. & DiFeliceantonio, A. G. The tempted brain eats:Pleasure and desire circuits in obesity and eating disorders. Brain Res., 1350:43-64, 2010.

Berthoud, H. R. Metabolic and hedonic drives in the neural control of appetite: who is the boss? Curr. Opin. Neurobiol., 21(6):888-96, 2011.

Blumenthala, D. M. & Gold, M. S. Neurobiology of food addiction. Curr. Opin. Clin. Nutr., 13:359- 65, 2010.

Brobeck, J. R.; Tepperman, J. & Long, N. H. Experimental hypothalamic hyperphagia in the albino rat. Yale J. Biol. Med., 15:831-53, 1943.

Bulik, C.; Tozzi, F.; Anderson, C.; Mazzeo, S.; Aggen, S. & Sullivan P. The relation between eating disorder and components of perfectionism. Am. J. Psych., 160:366-8, 2003.

Campbell, I. C.; Mill, J.; Uher, R. & Schmidt, U. Eating disorders, gene-environment interactions and epigenetics. Neurosci. Biobehav. Rev., 35(3):784- 93, 2011.

Davis, C.; Strachan, S. & Berkson, M. Sensitivy to reward: implications for overeating and overweigth. Appetite, 42:131-8, 2004.

El-Sohemy, A.; Stewart, L.; Khataan, N.; FontaineBisson, B.; Kwong, P.; Ozsungur, S. & Cornelis, M. C. Nutrigenomics of taste - impact on food preferences and food production. Forum Nutr., 60:176-82, 2007.

Flanagan-Cato, L. M.; Weinreb, E. B. & LaBelle, D. R. Estradiol and progesterone differentially regulate the dendritic arbor of neurons in the hypothalamic ventromedial nucleus of the female rat (Rattus norvegicus). J. Comp. Neurol., 510(6):631-40,2008.

Flanagan-Cato, L. M.; Fluharty, S. J.; Weinreb, E. B. & LaBelle, D. R. Food restriction alters neuronal morphology in the hypothalamic ventromedial nucleus of male rats. Endocrinology, 149(1):93- 9, 2008b.

Genis-Mendoza, A. D.; Tovilla-Zarate, C. A. & Nicolini, H. Avances en genómica de los trastornos de la conducta alimentaria. Rev. Colomb. Psiquiatr., 42(4):350-5, 2013.

Haahr, M. E.; Rasmussen, P. M.; Madsen, K.; Marner, L.; Ratne, C.; Gillings, N.; Baaré, W. F. C. & Knudsen, G. M. Obesity is associated with high serotonin 4 receptor availability in the brain reward circuitry. Neuroimage, 61:884-8, 2012.

Heber, D. & Carpenter, C. L. Addictive genes and the relationship to obesity and inflammation. Mol. Neurobiol., 44(2):160-5, 2011.

Helder, S. G. & Collier, D. A. The genetics of eating disorders. Curr. Top Behav. Neurosci., 6:157-75, 2011.

Jacobi, C.; Hayward, C. Z. M.; Kraemer, H. C. & Agras, W. S. Coming to terms with risk factors for eating disorders: application of risk terminology and suggestions for a general taxonomy. Psychol. Bull., 130:19-65, 2004.

Kenny, P. J. Reward mechanisms in obesity: new insights and future directions. Neuron, 69(4):664- 79, 2011.

Laliberté, M.; Boland, F. J.& Leichner, P. Family climates: Family factors specific to disturbed eating and bulimia nervosa. J. Clin. Psychol., 55(9):1021-40, 1999.

Lenard, N. R. & Berthoud, H. R. Central and peripheral regulation of food intake and physical activity: pathways and genes. Obesity (Silver Spring), 16 Suppl 3:S11-22, 2008.

Marsh, R.; Horga, G.; Wang, Z.; Wang, P.; Klahr, K. W.; Berner, L. A.; et al. An FMRI study of selfregulatory control and conflict resolution in adolescents with bulimia nervosa. Am. J. Psychiatry., 168(11):1210-20, 2011.

Mazzeo, S. E. & Bulik, C. M. Environmental and genetic risk factors for eating disorders: what the clinician needs to know. Child. Adolesc. Psychiatr. Clin. N. Am., 18(1):67-82, 2009.

Morton, G. J.; Cummings, D. E.; Baskin, D. G.; Barsh, G. S. & Schwartz, M. W. Central nervous system control of food intake and body weight. Nature, 443(7109):289-95, 2006.

Olszewski, P. K.; Cedernaes, J.; Olsson, F.; Levine, A. S. & Schiöth, H. B. Analysis of the network of feeding neuroregulators using the Allen Brain Atlas. Neurosci. Biobehav. Rev., 32(5):945-56, 2008.

Pike, K. M.; Hilbert, A.; Wilfley, D. E.; Fairburn, C. G.; Dohm, F. A.; Walsh, B. T. & Striegel-Moore, R. Toward an understanding of risk factors for anorexia nervosa: a case-control study. Psychol. Med., 38:1443-53, 2008.

Scherag, S.; Hebebrand, J. & Hinney, A. Eating disorders: the current status of molecular genetic research. Eur. Child. Adolesc. Psychiatry., 19(3):211-26, 2010.

Skibicka, K. P.; Hansson, C.; Egecioglu, E. & Dickson, S. L. Role of ghrelin in food reward: impact of ghrelin on sucrose self-administration and mesolimbic dopamine and acetylcholine receptor gene expression. Addict. Biol., 17(1):95-107, 2012.

Sotak, B. N.; Hnasko, T. S.; Robinson, S.; Kremer, E. J. & Palmiter, R. D. Dysregulation of dopamine signaling in the dorsal striatum inhibits feeding. Brain Res., 1061(2):88-96, 2005.

Stenhammar, C.; Olsson, G.; Bahmanyar, S.; Hulting, A. L.; Wettergren, B.; Edlund, B. & Montgomery, S. Family stress and BMI in young children. Acta Paediatr., 99(8):1205-12, 2010.

Striegel-Moore, R. H.; Fairburn, C. G.; Wilfley, D. E.; Pike, K. M.; Dohm, F. A. & Kraemer, H. C. Toward an understanding of risk factors for binge-eating disorder in black and white women: a communitybased case-control study. Psychol. Med., 35:907- 17, 2005..

Terracciano, A.; Sutin, A. R.; McCrae, R. R.; Deiana. B.; Ferrucci, L.; Schlessinger, D.; Uda, M. & Costa, P. Facets of personality linked to underweight and overweight. Psychosomatic Med., 71:682-9, 2009.

Troisi, A.; Massaroni, P. & Cuzzolaro, M. Early separation anxiety and adult attachment style in women with eating disorders. Br. J. Clin. Psychol., 44:89-97, 2005.