Muscle plasticity and hybrid fibers in the masticatory musculature. Literature review

Muscle plasticity and hybrid fibers in the masticatory musculature. Literature review

Main Article Content

Felipe Inostroza

Abstract

The masticatory musculature is characterized by presenting hybrid fibers that in recent years have been related to the phenomenon of muscle plasticity. The objective of the study was to describe the relationship between muscle plasticity and the hybrid muscle fibers present in the masticatory muscles, through a narrative review. For this, an electronic search was conducted in PUBMED, ScienceDirect and BIREME, using the keywords: “Muscle Plasticity”, “Hybrid Muscle Fibers” and “Hybrid Fibers”. Documents that report the myosin heavy chain (MHC) isoforms present in the masticatory muscles of humans and other mammals were selected, along with the changes linked to functional demands. The presence of type I and type II pure fibers were described, in addition to other isoforms such as MHC-la, MHC-IIM, MHC-fetal and MHC-cardiac. However, a significant percentage of fibers in the masticatory muscles are hybrids, that is, they express more than one MHC isoform, which are also different at the intermuscular and intramuscular level. Local influences can contribute to the variation of fiber type expression. In the chewing muscles, weaning, the hardness of food, bruxism, craniofacial morphology and the use of dental prostheses generate changes at the level of the chewing muscles, where the presence of hybrid fibers is common. The important presence of hybrid fibers in the masticatory muscles and their relationship with muscle plasticity throughout the life cycle, due to functional and pathological changes, is concluded. It is important for Speech Therapy and Myofunctional Therapy to deepen their understanding of the physiology of oromyofunctional behavior.

References

Abe, S., Sakiyama, K., & Ide, Y. (2007). Muscle Plasticity: Changes in Oral Function of Muscle Fiber Characteristics. J. Oral Biosci, 49(3), 219-223. https://doi.org/10.1016/S1349-0079(07)80036-3

Bottinelli, R., Betto, R., Schiaffino, S., & Reggiani, C. (1994). Unloaded shortening velocity and myosin heavy chain and alkali light chain isoform composition in rat skeletal muscle fibres. J Physiol, 478, 341-349. https://doi.org/10.1113/jphysiol.1994.sp020254

Bottinelli, R., Canepari, M., Pellegrino, M., & Reggiani, C. (1996). Force-velocity properties of human skeletal muscle fibres: myosin heavy chain isoform and temperature dependence. J Physiol, 495,573-586. https://doi.org/10.1113/jphysiol.1996.sp021617

Brummer, H., Zhanga, M., Piddoubnya, M., & Medlerb, S. (2013). Hybrid Fibers Transform into Distinct Fiber Types in Maturing Mouse Muscles. Cells Tissues Organs, 198, 227–236. https://doi.org/10.1159/000355280

Dambreville, C., Charest, J., Thibaudier, Y., Hurteau, M., Kuczynski, V., Grenier, G., et al. (2016). Adaptive muscle plasticity of a remaining agonist following denervation of its close synergists in a model of complete spinal cord injury. J Neurophysiol, 116(3), 1366-74. https://doi.org/10.1152/jn.00328.2016

D’Antona, G., Pellegrino, M., Adami R, R. R., Carlizzi, C., Canepari, M. (2003). The effect of ageing and immobilization on structure and function of human skeletal muscle fibres. J Physiol, 552, 499-511. https://doi.org/10.1113/jphysiol.2003.046276

Di Maso, N., Caiozzo, V., & Baldwin, K. (2000). Single-fiber myosin heavy chain polymor- phism during postnatal development: modulation by hypothyroidism. Am J Physiol Regul Integr Comp Physiol, 278(4), 1099–1106. https://doi.org/10.1152/ajpregu.2000.278.4.R1099

English, A., Eason, J., Pol, M., Schwartz, G., & Shirley, A. (1998). Different phenotypes among slow/beta myosin heavy chain-containing fibres of rabbit masseter muscle: a novel type of diversity in adult muscle. J Muscle Res Cell Motil, 19, 525-535 https://doi.org/10.1023/A:1005360526559

Galler, S., Puchert, E., Gohlsch, B., Schmid, D., & Pette, D. (2002). Kinetic properties of cardiac myosin heavy chain isoforms in rat. Pflügers Arch, 445, 218-223. https://doi.org/10.1007/s00424-002-0934-6

Glaser, B., You, G., Zhang, M., & Medler, S. (2010). Relative proportions of hybrid fibers are unaffected by 6 weeks of running exercise in mouse skeletal muscles. Exp Physiol, 95, 211– 221. https://doi.org/10.1113/expphysiol.2009.049023

Gransee, H., Mantilla, C., & Sieck, G. (2012). Respiratory Muscle Plasticity. Compr Physiol, 2(2), 1441– 1462. https://doi.org/10.1002/cphy.c110050

Hall, J. E. (2016). Guyton y Hall Tratado de Fisiología Médica (13ª edición). Barcelona: Elsevier. Harzer, W., Worm, M., Gedrange, T., Schneider, M., & Wolf, P. (2007). Myosin heavy chain mRNA isoforms in masseter muscle before and after orthognathic surgery. Oral Surg Oral Med Oral athol Oral Radiol Endod, 104, 486–490. https://doi.org/10.1016/j.tripleo.2007.01.017

Hill, J. A., & Olson, E. N. (2012). An Introduction to Muscle. En J. A. Hill, & E. N. Olson, Muscle. Fundamental Biology and Mechanisms of Disease (First edition ed.). Oxford, UK: Elsevier.

Hoppeler, H. (2016). Molecular networks in skeletal muscle plasticity. J Exp Biol, 219, 205- 213. https://doi.org/10.1242/jeb.128207

Inostroza-Allende, F., Silva, Hilton Justino da. (2019). Fisiologia do Músculo Estriado Esquelético e do Exercício em Motricidade Orofacial. En: Hilton Justino da Silva; Adriana Tessitore; Andréa Rodrigues Motta; Daniele Andrade da Cunha; Giédre Berretin-Felix; Irene Queiroz Marchesan.(Org.). Tratado de Motricidade Orofacial. 1ed. São José dos Campos: Pulso Editorial, p. 101-114.

Komi, P., Viitasalo, J., Havu, M., Thorstensson, A., Sjodin, B., & Karlsson, J. (1977). Skeletal muscle fibres and muscle enzyme activities in monozygous and dizygous twins of both sexes. Acta Physiol. Scand, 100, 385–392.

https://doi.org/10.1111/j.1365-201X.1977.tb00001.x

Korfage, J., & Van Eijden, T. (1999). Regional differences in fibre type composition in the human temporalis muscle. J Anat, 194, 355-362. https://doi.org/10.1046/j.1469-7580.1999.19430355.x

Korfage, J., & Van Eijden, T. (2003). Myosin Heavy-chain Isoform Composition of Human Single Jaw-muscle Fibers. J Dent Res, 82(6), 481-485. https://doi.org/10.1177/154405910308200615

Korfage, J., Koolstra, J., Langenbach, G., & Van Eijden, T. (2005a). Fiber-type Composition of the Human Jaw Muscles—(Part 2) Role of Hybrid Fibers and Factors Responsible for Inter-individual

Variation. J Dent Res, 84(9), 784-793. https://doi.org/10.1177/154405910508400902

Korfage, J., Koolstra, J., Langenbach, G., & van Eijden, T. (2005b) Fiber-type Composition of the Human Jaw Muscles—(Part 1) Origin and Functional Significance of Fiber-type Diversity. J Dent Res, 84(9), 774-783. https://doi.org/10.1177/154405910508400901

Korfage, J., van Wessel, T., Langenbach, G., Ay, F., & van Eijden, T. (2006). Postnatal transitions in myosin heavy chain isoforms of the rabbit superficial masseter and digastric muscle. J. Anat, 208, 743–751.

https://doi.org/10.1111/j.1469-7580.2006.00562.x

Kupr, B., Schnyder, S., & Handschin, C. (2017). Role of nuclear receptors in exercise-induced muscle adaptations. Cold Spring Harb Perspect Med, 7(6), 1-21. https://doi.org/10.1101/cshperspect.a029835

Kwa, S., Weijs, W., & Jüch, P. (1995). Contraction characteristics and myosin heavy chain composition of rabbit masseter motor units. J Neurophysiol, 73, 538-549. https://doi.org/10.1152/jn.1995.73.2.538

Lewis, M., Hunt, N., Shah, R. (2013). Part IV: Masticatory Muscles. Chapter 6: Masticatory Muscle Structure and Function. En: Linda K. McLoon; Francisco H. Andrade. Craniofacial Muscles. New York: Springer, p. 91-109.

Maricic, N., Stieler, E., Gedrange, T., Schneider, M., Tausche, E., & Harzer, W. (2008). MGF- and myostatin-mRNA regulation in masseter muscle after orthognathic surgery. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 106, 487–492. https://doi.org/10.1016/j.tripleo.2008.01.039

Mounier, R., Theret, M., Lantier, L., Foretz, M., & Viollet, B. (2015). Expanding roles for AMPK in skeletal muscle plasticity. Trends Endocrinol. Metab, 26(6), 275-286. https://doi.org/10.1016/j.tem.2015.02.009

Mu, L., Su, H., Wang, J., Han, Y., & Sanders, I. (2004). Adult Human Mylohyoid Muscle Fibers Express Slow-Tonic, a-Cardiac, and Developmental Myosin Heavy-Chain Isoforms. Anat Rec A Discov Mol Cell Evol Biol, 279(2), 749–760. https://doi.org/doi.org/10.1002/ar.a.20065

Oukhai, K., Maricic, N., Schneider, M., Harzer, W., & Tausche, E. (2011). Developmental myosin heavy chain mRNA in masseter after orthognathic surgery: a preliminary study. J Craniomaxillofac Surg, 39, 401–406. https://doi.org/10.1016/j.jcms.2010.06.001

Qaisar, R., Bhaskaran, S., & Van Remmen, H. (2016). Muscle fiber type diversification during exercise and regeneration. Free Radic Biol Med, 98, 56–67. https://doi.org/10.1016/j.freeradbiomed.2016.03.025

Ravosa, M., Ning, J., Costley, D., Daniel, A., Stock, S., & Stack, M. (2010). Masticatory biomechanics and masseter fiber-type plasticity. J Musculoskelet Neuronal Interact, 10(1), 46-55. https://pubmed.ncbi.nlm.nih.gov/20190379/

Rowlerson, A., Pope, B., Murray, J., Whalen, R., & Weeds, A. (1981). A novel myosin present in cat jaw-closing muscles. J Muscle Res Cell Motil, 2, 415-438. https://doi.org/10.1007/BF00711968

Schiaffino, S., & Reggiani, C. (1994). Myosin isoforms in mammalian skeletal muscle. J Appl Physiol, 77, 493-501. https://doi.org/10.1152/jappl.1994.77.2.493

Snijders, T., Nederveen, J., McKay, B., Joanisse, S., Verdijk, L., van Loon, L., et al. (2015). Satellite cells in human skeletal muscle plasticity. Physiol, 6(283), 1-15. https://doi.org/10.3389/fphys.2015.00283

Vreeke, M., Langenbach, G., Korfage, J., Zentner, A., & Grünheid, T. (2011) The masticatory system under varying functional load. Part 1: structural adaptation of rabbit jaw muscles to reduced masticatory load. European Journal of Orthodontics, 33:359–364. https://doi.org/10.1093/ejo/cjq083

Wu, Y., Crumley, R., & Caiozzo, V. (2000). Are Hybrid Fibers a Common Motif of Canine Laryngeal Muscles? Single-Fiber Analyses of Myosin Heavy-Chain Isoform Composition. Arch Otolaryngol Head Neck Surg, 126(7), 865-873. https://doi.org/10.1001/archotol.126.7.865