La desventaja de los hombres frente a la COVID-19. Análisis de la influencia del sexo sobre la respuesta inmunitaria ante la infección por SARS-CoV-2.
Contenido principal del artículo
Resumen
El mundo se encuentra en medio de la pandemia de la enfermedad por coronavirus 2019 (COVID-19). En la mayoría de los países, la tasa de mortalidad, así como, la severidad de la enfermedad es más alta en hombres que en mujeres. Este sesgo sexual sugiere que los hombres son más propensos a desarrollar complicaciones graves oa sucumbir a las mismas, lo que conduce a la muerte. Por lo tanto, es importante comprender los elementos biológicos basados en el sexo que inciden en la respuesta inmunitaria. El objetivo de esta revisión fue hacer un análisis en relación a la evidencia disponible sobre los diferentes factores que permitirían explicar esta disparidad sexual. Abordamos las diferencias en la respuesta inmunitaria en ambos sexos tomando en cuenta el aspecto genético, hormonal y el papel del sistema renina-angiotensina. Para ello, se realizó una búsqueda minuciosa en diferentes bases de datos utilizando las siguientes palabras clave: (Diferencia de sexo, genética, hormonas sexuales, COVID-19, SARS-CoV-2, respuesta inmunitaria, inflamación, hombres, mujeres). Los resultados de nuestro análisis ofrecen una comprensión más clara sobre la influencia de las diferencias sexuales en la capacidad de respuesta a una infección, con especial énfasis en la infección por SARS-CoV-2. Conocer estos factores no solo ayudará a comprender mejor la patogenia de la COVID-19, sino, además, guiará el diseño de terapias efectivas para la medicina personalizada basada en las diferencias sexuales. hombres, mujeres). Los resultados de nuestro análisis ofrecen una comprensión más clara sobre la influencia de las diferencias sexuales en la capacidad de respuesta a una infección, con especial énfasis en la infección por SARS-CoV-2. Conocer estos factores no solo ayudará a comprender mejor la patogenia de la COVID-19, sino, además, guiará el diseño de terapias efectivas para la medicina personalizada basada en las diferencias sexuales. hombres, mujeres). Los resultados de nuestro análisis ofrecen una comprensión más clara sobre la influencia de las diferencias sexuales en la capacidad de respuesta a una infección, con especial énfasis en la infección por SARS-CoV-2. Conocer estos factores no solo ayudará a comprender mejor la patogenia de la COVID-19, sino, además, guiará el diseño de terapias efectivas para la medicina personalizada basada en las diferencias sexuales.
Citas
Alghamdi, IG., Hussain, II., Almalki, SS., Alghamdi, MS., Alghamdi, MM., El-Sheemy MA. (2014) The pattern of Middle East respiratory syndrome coronavirus in Saudi Arabia: a descriptive epidemiological analysis of data from the Saudi Ministry of Health. Int J Gen Med., 20;7:417-23. http://doi.org.10.2147/IJGM.S67061.
Aomatsu, M., Kato, T., Kasahara, E., Kitagawa, S. (2013) Gender difference in tumor necrosis factor-α production in human neutro,phils stimulated by lipopolysaccharide and interferon-γ. Biochem Biophys Res Commun., 441(1):220-5. https://doi.org.10.1016/j.bbrc.2013.10.042.
Barrat, F., Lesourd, B., Boulouis, HJ., Thibault, D., Vincent-Naulleau, S., Gjata, B., Louise, A., Neway, T., Pilet C. (1997) Sex and parity modulate cytokine production during murine ageing. Clin Exp Immunol., 109(3):562-8. https://doi.org.10.1046/j.1365-2249.1997.4851387.x.
Benjafield, A. V., Wang, W. Y., Morris, B. J. (2004). No association of angiotensin-converting enzyme 2 gene (ACE2) polymorphisms with essential hypertension. American journal of hypertension, 17(7), 624–628. https://doi.org/10.1016/j.amjhyper.2004.02.022
Billi, AC., Kahlenberg, JM., Gudjonsson JE. (2019) Sex bias in autoimmunity. Curr Opin Rheumatol., 31(1):53-61. https://doi.org.10.1097/BOR.0000000000000564.
Björnström, L., Sjöberg, M. (2005) Mechanisms of estrogen receptor signaling: convergence of genomic and nongenomic actions on target genes. Mol Endocrinol., 19(4):833-42. https://doi.org.10.1210/me.2004-0486.
Bouman, A., Heineman, MJ., Faas, MM. (2005) Sex hormones and the immune response in humans. Hum Reprod Update., 11(4):411-23. https://doi.org.10.1093/humupd/dmi008.
Bouman, A., Schipper, M., Heineman, MJ., Faas, MM. (2004) Gender difference in the non-specific and specific immune response in humans. Am J Reprod Immunol., 52(1):19-26. https://doi.org.10.1111/j.1600-0897.2004.00177.x.
Calippe, B., Douin-Echinard, V., Laffargue, M., Laurell, H., Rana-Poussine, V., Pipy, B., Guéry, JC., Bayard, F., Arnal, JF., Gourdy, P. (2008) Chronic estradiol administration in vivo promotes the proinflammatory response of macrophages to TLR4 activation: involvement of the phosphatidylinositol 3-kinase pathway. J Immunol., 180(12):7980-8. https://doi.org.10.4049/jimmunol.180.12.7980.
Carrel, L., Willard, HF. (2005) X-inactivation profile reveals extensive variability in X-linked gene expression in females. Nature., 434(7031):400-4. https://doi.org.10.1038/nature03479.
Channappanavar, R., Fett, C., Mack, M., Ten Eyck, PP., Meyerholz, DK., Perlman, S. (2017) Sex-Based Differences in Susceptibility to Severe Acute Respiratory Syndrome Coronavirus Infection. J Immunol., 198(10):4046-4053. https://doi.org.10.4049/jimmunol.1601896.
Cook IF. (2008) Sexual dimorphism of humoral immunity with human vaccines. Vaccine., 26(29-30):3551-5. https://doi.org.10.1016/j.vaccine.2008.04.054.
Das, BR., Bhanushali, AA., Khadapkar, R., Jeswani, KD., Bhavsar, M., Dasgupta, A. (2008) Reference ranges for lymphocyte subsets in adults from western India: influence of sex, age and method of enumeration. Indian J Med Sci., 62(10):397-406. https://doi.org.10.4103/0019-5359.42725.
Engler, RJ., Nelson, MR., Klote, MM., VanRaden, MJ., Huang, CY., Cox, NJ., Klimov, A., Keitel, WA., Nichol, KL., Carr, WW., Treanor, JJ. (2008) Walter Reed Health Care System Influenza Vaccine Consortium. Half- vs full-dose trivalent inactivated influenza vaccine (2004-2005): age, dose, and sex effects on immune responses. Arch Intern Med., 168(22):2405-14. https://doi.org.10.1001/archinternmed.2008.513.
Epidemiology Working Group for NCIP Epidemic Response, Chinese Center for Disease Control and Prevention (2020). Zhonghua liu xing bing xue za zhi = Zhonghua liuxingbingxue zazhi, 41(2), 145–151. https://doi.org.10.3760/cma.j.issn.0254-6450.2020.02.003
Erfinanda, L., Ravindran, K., Kohse, F., Gallo, K., Preissner, R., Walther, T., Kuebler, W. M. (2021). Oestrogen-mediated upregulation of the Mas receptor contributes to sex differences in acute lung injury and lung vascular barrier regulation. The European respiratory journal, 57(1), 2000921. https://doi.org/10.1183/13993003.00921-2020
Fairweather, D., Frisancho-Kiss, S., Rose, N. R. (2008). Sex differences in autoimmune disease from a pathological perspective. The American journal of pathology, 173(3), 600–609. https://doi.org/10.2353/ajpath.2008.071008
Fuentes, N., Silveyra, P. (2019) Estrogen receptor signaling mechanisms. Adv Protein Chem Struct Biol., 116:135-170. https://doi.org.10.1016/bs.apcsb.2019.01.001.
Furman, D., Hejblum, BP., Simon, N., Jojic, V., Dekker, CL., Thiébaut, R., Tibshirani, RJ., Davis, MM. (2014) Systems analysis of sex differences reveals an immunosuppressive role for testosterone in the response to influenza vaccination. Proc Natl Acad Sci U S A., 111(2):869-74. https://doi.org.10.1073/pnas.1321060111.
Gargaglioni, LH., & Marques, DA. (2020). Let's talk about sex in the context of COVID-19. Journal of applied physiology., 128(6), 1533–1538. https://doi.org/10.1152/japplphysiol.00335.2020.
Geurs, TL., Hill, EB., Lippold, DM., French, AR. (2012). Sex differences in murine susceptibility to systemic viral infections. Journal of autoimmunity, 38(2-3), J245–J253. https://doi.org/10.1016/j.jaut.2011.12.003
Ghazeeri, G., Abdullah, L., Abbas, O. (2011) Immunological differences in women compared with men: overview and contributing factors. Am J Reprod Immunol., 66(3):163-9. https://doi.org.10.1111/j.1600-0897.2011.01052.x.
Ghebreyesus TA (2020) WHO Director-General’s opening remarks at the media briefing on COVID-19 - 11 March 020. https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19%2D%2D-11-march-2020. Consultado el 20 de Marzo de 2021.
Giefing-Kröll, C., Berger, P., Lepperdinger, G., Grubeck-Loebenstein, B. (2015) How sex and age affect immune responses, susceptibility to infections, and response to vaccination. Aging Cell., 14(3):309-21. https://doi.org.10.1111/acel.12326.
Giltay, EJ., Fonk, JC., von Blomberg, BM., Drexhage, HA., Schalkwijk, C., Gooren, LJ. (2000) In vivo effects of sex steroids on lymphocyte responsiveness and immunoglobulin levels in humans. J Clin Endocrinol Metab., 85(4):1648-57. https://doi.org.10.1210/jcem.85.4.6562.
Global health 50/50. The COVID-19 Sex-Disaggregated Data Tracker. https://globalhealth5050.org/covid19/sex-disaggregated-data-tracker/ . Consultado el 22 de marzo, 2021.
Guan, WJ., Ni, ZY., Hu, Y., Liang, W H., Ou, C Q., He, JX., Liu, L., Shan, H., Lei, CL., Hui, D., Du, B., Li, LJ., Zeng, G., Yuen, KY., Chen, RC., Tang, CL., Wang, T., Chen, P. Y., Xiang, J., Li, SY., China Medical Treatment Expert Group for Covid-19 (2020). Clinical Characteristics of Coronavirus Disease 2019 in China. The New England journal of medicine., 382(18), 1708–1720. https://doi.org/10.1056/NEJMoa2002032.
Hao, S., Li, P., Zhao, J., Hu, Y., Hou,Y. (2008) 17beta-estradiol suppresses cytotoxicity and proliferative capacity of murine splenic NK1.1+ cells. Cell Mol Immunol., 5(5):357-64. https://doi.org.10.1038/cmi.2008.44.
Hoffmann, M., Kleine-Weber, H., Schroeder, S., Krüger, N., Herrler, T., Erichsen, S., Schiergens, TS., Herrler, G., Wu, NH., Nitsche, A., Müller, MA., Drosten, C., Pöhlmann, S. (2020) SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell., 181(2):271-280.e8. https://doi.org.10.1016/j.cell.2020.02.052.
Jaillon, S., Berthenet, K., Garlanda, C. (2019) Sexual Dimorphism in Innate Immunity. Clin Rev Allergy Immunol., 56(3):308-321. https://doi.org.10.1007/s12016-017-8648-x.
Karlberg, J., Chong, DS., Lai,WY. (2004) Do men have a higher case fatality rate of severe acute respiratory syndrome than women do? Am J Epidemiol., 159(3):229-31. http://doi.org.10.1093/aje/kwh056.
Klein, SL., Marriott, I., Fish, EN. (2015) Sex-based differences in immune function and responses to vaccination. Trans R Soc Trop Med Hyg., 109(1):9-15. https://doi.org.10.1093/trstmh/tru167.
Kramer, PR., Kramer, SF., Guan, G. (2004) 17 beta-estradiol regulates cytokine release through modulation of CD16 expression in monocytes and monocyte-derived macrophages. Arthritis Rheum., 50(6):1967-75. https://doi.org.10.1002/art.20309.
La Vignera, S., Cannarella, R., Condorelli, RA., Torre, F., Aversa, A., Calogero, AE. (2020) Sex-specific SARS-CoV-2 mortality: among hormone-modulated ACE2 expression, risk of venous thromboembolism and hypovitaminosis D. Int J Mol Sci., 21: 2948. https://doi.org.10.3390/ijms21082948.
Laffont, S., Rouquié, N., Azar, P., Seillet, C., Plumas, J., Aspord, C., Guéry, JC. (2014) X-Chromosome complement and estrogen receptor signaling independently contribute to the enhanced TLR7-mediated IFN-α production of plasmacytoid dendritic cells from women. J Immunol., 193(11):5444-52. https://doi.org.10.4049/jimmunol.1303400.
Leong, HN., Earnest, A., Lim, HH., Chin, CF., Tan, C., Puhaindran, ME., et al. (2006) SARS in Singapore--predictors of disease severity. Ann Acad Med Singap., 35(5):326-31.
Li, LQ., Huang, T., Wang, YQ., Wang, ZP., Liang, Y., Huang, TB., Zhang, HY., Sun, W., Wang, Y. (2020) COVID-19 patients' clinical characteristics, discharge rate, and fatality rate of meta-analysis. J Med Virol., 2020 92(6):577-583. http://doi.org.10.1002/jmv.25757.
Lin, B., Ferguson, C., White, JT., Wang, S., Vessella, R., True, LD., Hood, L., Nelson, PS. (1999) Prostate-localized and androgen-regulated expression of the membrane-bound serine protease TMPRSS2. Cancer Res., 59(17):4180-4.
Liu, J., Ji, H., Zheng, W., Wu, X., Zhu, JJ., Arnold, AP., Sandberg, K. (2010) Sex differences in renal angiotensin converting enzyme 2 (ACE2) activity are 17β-oestradiol-dependent and sex chromosome-independent. Biol Sex Differ., 1:6. https://doi.org.10.1186/2042-6410-1-6
Marriott, I., Bost, KL., Huet-Hudson, YM. (2006) Sexual dimorphism in expression of receptors for bacterial lipopolysaccharides in murine macrophages: a possible mechanism for gender-based differences in endotoxic shock susceptibility. J Reprod Immunol., 71(1):12-27. https://doi.org.10.1016/j.jri.2006.01.004.
Meier, A., Chang, JJ., Chan, ES., Pollard, RB., Sidhu, HK., Kulkarni, S., Wen, TF., Lindsay, RJ., Orellana, L., Mildvan, D., Bazner, S., Streeck, H., Alter, G., Lifson, JD., Carrington, M., Bosch, RJ., Robbins, GK., Altfeld M. (2009) Sex differences in the Toll-like receptor-mediated response of plasmacytoid dendritic cells to HIV-1. Nat Med., 15(8):955-9. https://doi.org.10.1038/nm.2004.
Migeon BR. (2006) The role of X inactivation and cellular mosaicism in women's health and sex-specific diseases. JAMA., 295(12):1428-33. https://doi.org.10.1001/jama.295.12.1428.
Mjaess, G., Karam, A., Aoun, F., Albisinni, S., Roumeguère, T. (2020) COVID-19 and the male susceptibility: the role of ACE2, TMPRSS2 and the androgen receptor. Prog Urol., 30(10):484-487. https://doi.org.10.1016/j.purol.2020.05.007.
Montopoli, M., Zumerle, S., Vettor, R., Rugge, M., Zorzi, M., Catapano, CV., Carbone, GM., Cavalli, A., Pagano, F., Ragazzi, E., Prayer-Galetti, T., Alimonti, A. (2020) Androgen-deprivation therapies for prostate cancer and risk of infection by SARS-CoV-2: a population-based study (N = 4532). Ann Oncol., 31(8):1040-1045. https://doi.org.10.1016/j.annonc.2020.04.479.
Moretti, C., Lanzolla, G., Moretti, M., Gnessi, L., Carmina, E. (2017). Androgens and Hypertension in Men and Women: a Unifying View. Current hypertension reports, 19(5), 44. https://doi.org/10.1007/s11906-017-0740-3
Moxley, G., Posthuma, D., Carlson, P., Estrada, E., Han, J., Benson, LL., Neale, MC. (2002) Sexual dimorphism in innate immunity. Arthritis Rheum., 46(1):250-8. https://doi.org.10.1002/1529-0131(200201)46:1<250::AID-ART10064>3.0.CO;2-T.
O'Lone, R., Frith, MC., Karlsson, EK., Hansen, U. (2004) Genomic targets of nuclear estrogen receptors. Mol Endocrinol., 18(8):1859-75. https://doi.org.10.1210/me.2003-0044.
O'Malley BW. (2005) A life-long search for the molecular pathways of steroid hormone action. Mol Endocrinol., 19(6):1402-11. https://doi.org.10.1210/me.2004-0480.
Pedreañez, A., Mosquera-Sulbaran, J., Muñoz, N. (2021) SARS-CoV-2 infection represents a high risk for the elderly: analysis of pathogenesis. Arch Virol., 22:1–10. https://doi.org.10.1007/s00705-021-05042-w.
Phiel, KL., Henderson, RA., Adelman, SJ., Elloso, MM. (2005) Differential estrogen receptor gene expression in human peripheral blood mononuclear cell populations. Immunol Lett., 97(1):107-13. https://doi.org.10.1016/j.imlet.2004.10.007.
Rastrelli, G., Di Stasi, V., Inglese, F., Beccaria, M., Garuti, M., Di Costanzo, D., Spreafico, F., Greco, GF., Cervi, G., Pecoriello, A., Magini, A., Todisco, T., Cipriani, S., Maseroli, E., Corona, G., Salonia, A., Lenzi, A., Maggi, M., De Donno, G., Vignozzi, L. (2021) Low testosterone levels predict clinical adverse outcomes in SARS-CoV-2 pneumonia patients. Andrology., 9(1):88-98. https://doi.org.10.1111/andr.12821.
Sa Ribero, M., Jouvenet, N., Dreux, M., Nisole S. (2020) Interplay between SARS-CoV-2 and the type I interferon response. PLoS Pathog., 16(7):e1008737. https://doi.org.10.1371/journal.ppat.1008737.
Salazar, M., Barochiner, J., Espeche, W., Ennis, I. (2020) COVID-19, hipertensión y enfermedad cardiovascular [COVID-19 and its relationship with hypertension and cardiovascular disease]. Hipertens Riesgo Vasc., 37(4):176-180. https://doi.org.10.1016/j.hipert.2020.06.003.
Souyris, M., Mejía, JE., Chaumeil, J., Guéry, JC. (2019) Female predisposition to TLR7-driven autoimmunity: gene dosage and the escape from X chromosome inactivation. Semin Immunopathol., 41(2):153-164. https://doi.org.10.1007/s002810180712-y.
Spolarics, Z. (2007) The X-files of inflammation: cellular mosaicism of X-linked polymorphic genes and the female advantage in the host response to injury and infection. Shock., 27(6):597-604. https://doi.org. 10.1097/SHK.0b013e31802e40bd.
Straub, RH. (2007) The complex role of estrogens in inflammation. Endocr Rev., 28(5):521-74. https://doi.org.10.1210/er.2007-0001.
Sullivan, JC., Rodriguez-Miguelez, P., Zimmerman, MA., Harris, RA. (2015) Differences in angiotensin (1-7) between men and women. Am J Physiol Heart Circ Physiol., 308: H1171–H1176. https://doi.org.10.1152/ajpheart.00897.2014.
Torcia, MG., Nencioni, L., Clemente, AM., Civitelli, L., Celestino, I., Limongi, D., Fadigati, G., Perissi, E., Cozzolino, F., Garaci, E., Palamara AT. (2012) Sex differences in the response to viral infections: TLR8 and TLR9 ligand stimulation induce higher IL10 production in males. PLoS One., 7(6):e39853. https://doi.org.10.1371/journal.pone.0039853.
Turner JM. (2007) Meiotic sex chromosome inactivation. Development., 134(10):1823-31. https://doi.org.10.1242/dev.000018.
Villacres, MC., Longmate, J., Auge, C., Diamond DJ. (2004) Predominant type 1 CMV-specific memory T-helper response in humans: evidence for gender differences in cytokine secretion. Hum Immunol., 65(5):476-85. https://doi.org.10.1016/j.humimm.2004.02.021.
Vrtačnik, P., Ostanek, B., Mencej-Bedrač, S., Marc, J. (2014) The many faces of estrogen signaling. Biochem Med (Zagreb)., 24(3):329-42. https://doi.org. 10.11613/BM.2014.035.
Wikby, A., Månsson, IA., Johansson, B., Strindhall, J., Nilsson SE. (2008) The immune risk profile is associated with age and gender: findings from three Swedish population studies of individuals 20-100 years of age. Biogerontology., 9(5):299-308. https://doi.org.10.1007/s10522-008-9138-6.
Yang, X., Yu, Y., Xu, J., Shu, H., Xia, J., Liu, H., Wu, Y., Zhang, L., Yu, Z., Fang, M., Yu, T., Wang, Y., Pan, S., Zou, X., Yuan, S., Shang Y. (2020) Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med., 8(5):475-481. https://doi.org.10.1016/S22132600(20)30079-5.
Zheng, R., Pan, G., Thobe, BM., Choudhry, MA., Matsutani, T., Samy, TS., Kang, SC., Bland, KI., Chaudry, IH. (2006) MyD88 and Src are differentially regulated in Kupffer cells of males and proestrus females following hypoxia. Mol Med., 12(4-6):65-73. https://doi.org.10.2119/2006-00030.Zheng.