Bacterial colonization of composite resins used with direct technique. A brief review.

Bacterial colonization of composite resins used with direct technique. A brief review.

Contenido principal del artículo

Doris Calderón
Nancy Pérez
Jéssica Quintuña
Rosa Sanango
Mónica Tello

Resumen

In restorative dentistry, the use of composite resins with direct technique for the replacement of missing tooth structure is very common. One drawback is that surface roughness allows the adherence of microorganisms and the formation of dental plaque, being the polishing technique a key stage in the restoration process. The aim of this paper is to review the process of bacterial colonization of composite resins used with direct technique. According to in vitro studies, bacterial adhesion on microhybrid composite resins is 3.91 ± 0.52 UFC and on nanohybrid is 3.34 ± 0.74 UFC. Resins with particle size of 2.5 micrometers contained a greater volume of biofilms and enabled adhesion of S. mutans; in turn, resins with particle size of 0.1 to 0.4 micrometers showed lower bacterial adherence. As summary, the degree of bacterial colonization depends on hygiene, polishing technique and composition of restorative material: the bigger the particle size, the greater the adhesion of bacterial plaque.

Citas

M FiltekTM Z350XT. Rugosidad de la superficie de las resinas. 2017. Available at: http://multimedia.3m.com/mws/media/725177O/technical-product-profile-filtek-z350-xt.pdf.

Araujo S. Colonización de streptococo mutans en resina compuesta y amalgama dental: estudio in vitro [Thesis]. Quito: Universidad Central del Ecuador; 2017.

Azam M, Khan S, Muzzafar D, Faryal R, Siddiqi S, Ahmad R, Chauhdry A, Rehman I. Structural, surface, in vitro bacterial adhesion and biofilm formation analysis of three dental restorative composites. Mater. 2015; 8(6):3221-3237.

Bezerra A, Fernandez J, Vieira I, Castillo B, Alves G. Impact of additional polishing on the roughness and surface morphology of dental composite resins. Rev Port Estomatol Med Dent Cir Maxilofac. 2016; 57(2):74-81.

Bonilla E, Aguilar A, Flores P, Sandoval Z, Cavazos E, Torres P. Evaluación de la resistencia a la flexión de tres resinas compuestas. Rev Oper Dent Biomater. 2017; 6(3):33-36.

Bourbia M, Finer Y. Biochemical stability and interactions of dental resin composites and adhesives with host and bacteria in the oral cavity: a review. J Can Dent Assoc. 2018; 84(1):1-7.

Cazzaniga G, Ionescu A, Ottobell M, Garcia F, Brambilla E. Surface properties of resin-based composite materials and biofilm formation: a review of the current literature. Am J Dent. 2015; 28(6): 311-320.

Chan, B. Streptococcus sobrinus. 2010. Available at: https://microbewiki.kenyon.edu/index.php/Streptococcus_sobrinus.

Cruz S, Diaz P, Arias D, Mazon G. Microbiota de los ecosistemas de la cavidad bucal. Rev Cubana Estomatol. 2017; 54(1):84-99.

Denson N, Wells M, Tipton D, García F, Babu J. Bacterial adhesion and biofilm formation on direct, tooth-colored restorative materials: an in vitro study. Adv Dent Oral Health. 2018; 8(3):1-6.

Frenzel N, Maenz S, Beltran V, Volpel A, Sigusch B, Ludecke C, Jandt K. Template assisted surface microstructuring of flowable dental composites and its effect on microbial adhesion properties. Dent Mater. 2016; 32(3):476-487.

Gharechahi M, Moosavi H, Forghani M. Effect of surface roughness and materials composition on biofilm formation. J Biomater Nanobiotechnol. 2012; 3(4):541-546.

Glauser S, Astasov M, Muller J, Fischer J, Waltimo T, Rohr N. Bacterial colonization of resin composite cements: influence of material composition and surface roughness. Eur J Oral Sci. 2017; 125(4):294-302.

González, N. Lactobacillus Acidophilus. 2017. Available at: http://www.botica.com.py/prospecto-digital/2016/11/16/lactobacillus-acidophilus/.

Ionescu AC, Hahnel S, Cazzaniga G, Ottobelli M, Bragga RR, Rodrigues MC, Brambilla E. Streptococcus mutans adherence and bio?lm formation on experimental composites containing dicalcium phosphate dihydrate nanoparticle. J Mater Sci Mater Med. 2017; 28(108):1-11.

Kim S, Song M, Roh B, Park S, Park J. Inhibition of streptococcus mutans biofilm formation on composite resins containing ursolic acid. Restor Dent Endod. 2013; 38(2): 65-72.

Kunkel, D. Streptococcus mutans. 2019. Available at: https://www.sciencephoto.com/media/798995/view/oral-bacterium-streptococcus-mutans-sem.

Lamas-Lara C, Alvarado-Menacho S, Angulo G. Importancia del acabado y pulido en restauraciones directas de resina compuesta en piezas dentarias anteriores. Rev Estomatol Herediana. 2015; 25(2):145-151.

Lamont RJ, Hajishengalis GN, Jenkinson HF. Microbiología e inmunología de la cavidad oral. Mexico D.F: El Manual Moderno; 2015.

Medeiros L, Neto J, Souza T, Zago L, Domingues F, Soares A. Bacterial Adhesion and surface roughness for different clinical techniques for acrylic polymethyl methacrylate. Int J Dent. 2016; 2916(2): 1-6.

Menéndez, S. Fases en la formación de biofilms microbianos. 2015. Available at: https://www.researchgate.net/figure/Figura-4-Fases-en-la-formacion-de-biofilms-microbianos-las-ciudades-de-los_fig4_41616230.

Motevasselian F, Zifabar E, Yassini E, Mirzaei M, Pourmirhoseni N. Adherence of streptococcus mutans to microhybrid and nanohybrid resin composites and dental amalgam: an in vitro study. J Dent. 2017; 14(6): 337-343.

Moura P, Azevedo S, Castillo B, Viera I, Alves G. Impact of a novel polishing method on the surface roughness and micromorphology of nanofilled and microhybrid composite resins. Rev Port Estomatol Med Dent Cir Maxillofac. 2015; 56(1):18-24.

Nabert-Georgi C, Rodloff A, Jentsch H, Reissmann D, Schaumann R, Stingu C. Influence of oral bacteria on adhesion of streptococcus mutans and streptococcus sanguinis to dental materials. Clin Exp Dent Res. 2018; 4(3):72-77.

Neves PB, Agnelli JA, Kurachi C, Souza CW. Addition of silver nanoparticles to composite resin: effect on physical and bactericidal properties In vitro. Braz Dent J. 2014; 35(2):141-145.

Neves PB, Souza C, Loshchagin E. In vitro reduction of streptococcus mutans biofilm on silver nanoparticle-modified composite resin. South Braz Dent J. 2014. 11 (4); 360-368.

Oilo M, Bakken V. Biofilm and dental biomaterials. Mater. 2015; 8(6):2887-2900.

Rutterman A, Trellenkamp T, Bergmann N, Beikler T, Ritter H. Bacterial viability and physical properties of antibacterially modified experimental dental resin composites. PLOS ONE. 2015; 10(5) e0126198.

Sarduy L, González M. La biopelícula: una nueva concepción de la placa dentobacteriana. Medicentro Electrónica. 2016; 20(3): 167-175.

Subramani K, Ahmed W. Emerging Nanotechnologies in Dentistry. New York: Elsevier; 2018. Chapter 3, Antimicrobial nanoparticles in restorative composites; 35-44.

Vyavahare N, Gaikwad S, Raghavendra S, Kazi M. Effect of finishing and polishing on biofilm adhesion to composite surface: an ex vivo study. J Dent Allied Sci. 2014; 3(2):70-73.

Zeballos L, Valdivieso A. Materiales dentales de restauración. Rev Act Clín Med. 2013; 30(1):1498-1504.