Efecto del Extracto de hoja de Moringa Olifera Lam. en la Histología del Hipocampo y la actividad enzimática en el suero de ratas Wistar adultas expuestas a Cloruro de Aluminio Extracto de M. oleifera para protección del daño por Cloruro de Aluminio M. oleifera Extract Protect against Aluminium Chloride

Efecto del Extracto de hoja de Moringa Olifera Lam. en la Histología del Hipocampo y la actividad enzimática en el suero de ratas Wistar adultas expuestas a Cloruro de Aluminio Extracto de M. oleifera para protección del daño por Cloruro de Aluminio
M. oleifera Extract Protect against Aluminium Chloride

Contenido principal del artículo

Nseabasi K. Adighije
Itohowo A. Ekerete
Moses Ekong

Resumen

Introducción: El aluminio, un metal presente en diversos lugares implicado en algunas enfermedades neurodegenerativas, está relacionado con la activación de especies reactivas de oxígeno. Se informa que las plantas ricas en antioxidantes, Moringa oleifera (MO) protegen contra la acción del aluminio. Este estudio investigó las acciones del extracto de hoja de MO (MOLE) en los cambios celulares del hipocampo inducidos por el cloruro de aluminio (AlCl3) y los niveles séricos de fosfatasa alcalina (ALP), aspartato transaminasa (AST) y alanina transaminasa (ALT) en ratas Wistar adultas. Materiales y métodos: SE utilizaron treinta ratas Wistar divididas en 5 grupos, los animales pesaban entre 150 gy 220 g; 1 control (5 ml / kg de agua destilada), 2-AlCl3 (100 mg / kg), 3 MOLE de dosis baja (250 mg / kg), 4 MOLE de dosis alta (1000 mg / kg), 5 AlCl3 concurrente y MOLE de dosis baja, y MOLE 6-concurrente y MOLE de dosis alta. Todas las administraciones fueron por sonda oral durante 21 días. El día 22, después de la anestesia profunda y la punción cardíaca, se obtuvo sangre para el análisis de las enzimas séricas y la perfusión cerebral se fijó, recogió y procesó para el estudio histológico. Resultados: Los resultados mostraron un nivel de ALP significativamente (p <0.05) más alto en el grupo AlCl3 en comparación con el control, así como en los otros grupos de prueba. Sin embargo, no hubo niveles significativos (p> 0.05) de AST y ALT. El hipocampo CA3 del grupo AlCl3 mostró células hipertróficas, y algunas de las células tenían características cariorrecticas. Los grupos de AlCl3 concurrentes y dosis bajas y altas, MOLE mostraron menos de estas características adversas. Conclusión: Estos resultados sugieren que MOLE puede proteger las actividades enzimáticas contra el cloruro de aluminio. Sin embargo, su acción sobre el hipocampo aún está sujeta a más investigaciones.

Citas

Abdalla, R.P., Kida, B.M.S., Pinheiro, J.P.S., Oliveira, L.F., Martinez, C.B.F. & Moreira, R.G. (2019).Exposure to Aluminium , Aluminium + manganese and acid pH triggers different antioxidant responses in gills and liver of Astyanax altiparanaen(Teleostei: Characiformes: Characidae) males. Xomp Biochem Physiol C Toxicol Pharmacol. 215L33-40. https://doi.org/10.1016/j.cbpc.2018.09.004

Akpanyung, E.O., Nwaokonko, D.U., Ekong, M.B. & Ekpo, M.M. (2018). Evaluation of the protective effect of Moringa oleifera leaf extract against Aluminium induced liver damage in male albino Wistar rats. Int J Sci. 7(2):20-30. http://dx.doi.org/10.18483/ijSci.1520

Aremu, A., Eghianruwa, I.K., Biobaku, K.T., Ahmed, O.A., Raufu, A.I., Akorede, G.J. & Sulyman, K.T. (2018). Methanolic leaf extract of Moringa oleifera improves the survivability rate, weight gain and histopathological changes of wistar rats Infected with trypanosoma Brucei. Int J Vet Sci Med.1: 39-44. https://doi.org/10.1016/j.ijvsm.2018.04.006

Atawodi S.E. Bulus T., Ibrahim S., Ameh D.A., Nok A.J., Mamman M. & Galadima M. (2003). African Journal of Biotechnologyvol. 2 issue 9 pp: 317-321 https://doi.org/10.5897/AJB2003.000-1065

Chakrabarty, M., Bhat, P., Kumari, S., D’Souza, A., Bairy, K.L., Chaturvedi, A., Natarajan, A., Rao, M.K.G. & Kamath, S. (2012).Cortico-hippocampal salvage in chronic Aluminium induced neurodegeneration by Celastrus paniculatus seed oil: Neurobehavioural, biochemical, histological study. J Pharmacol Pharmacother. 3(2): 161–171. https://dx.doi.org/10.4103%2F0976-500X.95520

Chu, X., Zhou, S. & Sun, R. (2018). Chrysophanol relieves cognition deficits and neuronal loss through inhibition of inflammation in diabetic mice. Neurochem Res. 43: 972-983. https://doi.org/10.1007/s11064-018-2503-1

Ekong, M.B., Ekpo, M.M., Akpanyung, E.O. & Nwaokonko, D.U. (2017). Neuroprotective effect of Moringa oleifera leaf extract on Aluminium -induced temporal cortical degeneration. Met Brain Dis. 32(5):1437–1447. https://doi.org/10.1007/s11011-017-0011-7

Exley, C. & Vickers, T. (2014) Elevated brain Aluminium and early onset Alzheimer’s disease in an individual occupationally exposed to Aluminium . J Med Case Report. 8: 1752-1947. https://doi.org/10.1186/1752-1947-8-41

Falowo, A.B., Mukumbo, F.E., Idamokoro, E.M., Lorenzo, J.M., Afolayan, A.J. & Muchenje, V. (2018). Multifunctional application of Moringa oleifera Lam. in nutrition and animal food products: a review. Food Res Int. 106: 317-334. https://doi.org/10.1016/j.foodres.2017.12.079

Ferreira, P.M.P., Farias, D.F., de Abreu Oliveira, J.T. & Carvalho, A.D.U.(2008). Moringa oleifera: bioactive compounds and nutritional potential. Rev. Nutr. 21(4): 431-437. https://doi.org/10.1590/S1415-52732008000400007

Galgani, J. & Ravussin, E. (2008). Energy metabolism, fuel selection and body weight regulation. Int J Obes (Lond). 32(s7): s109-s119. https://doi.org/10.1038/ijo.2008.246

Ghannam, J.Y. & Al Kharazi, K.A. (2020) Neuroanatomy, Cranial Meninges. StatPearls (Internet). Treasure Island (FL): StatPearls Publishing LLC. https://www.ncbi.nlm.nih.gov/books/NBK539882/

Giacoppo, S., Galuppo, M., Mortant, S., Low, R., Rollin, P., Bramanti, P. & Mazzon, E. (2015). An overview on neuroprotective effects of isothiocyanates for the treatment of neurodegenerative disease. Fitoterapia, 106:12-21. https://doi.org/10.1016/j.fitote.2015.08.001

Goldstein, M.E., Cooper, H.S., Bruce, J., Carden, M.J., Lee, V.M. & Schlaepter, W. (1987).Phosphorylation of neurofilament proteins and chromolysis following transection of rat sciatic

nerve. J Neurosci. 5(5): 1586-1594. https://doi.org/10.1523/jneurosci.07-05-01586.1987

Golub, N.S. & Germann, S.L. (2001). Long term consequences of developmental exposure to Aluminium in a sub optimal diet for growth and behaviour of Swiss Webster mice. NeurotoxicolTeratol. 23: 365-372. https://doi.org/10.1016/s0892-0362(01)00144-1

Gopalakrishnan, L., Doriya, K. & Kumar, D.S. (2017). Moringa oleifera a review on nutritive importance and its medicinal application. Food Science and Human Wellness. 5(2):49-56. http://dx.doi.org/10.1016/j.fshw.2016.04.001

Huang, X.J., Choi, Y.K., Im, H.S., Yarimaga, O., Yoon, E. & Kim, H.S. (2006). Aspartate aminotransferase (AST/GOT) and alanine aminotransferase (ALT/GPT) detection techniques.Sensors (Basel). 6(7): 756–782.https://doi.org/10.3390/s6070756

Jacobson, S., Marcus, E.M. & Pugsley, S. (2018). Neuroanatomy for the Neuroscientist. 3rd ed.Springer International Publishing. https://link.springer.com/book/10.1007/978-3-319-60187-8

Krupińska, I. (2020). Aluminium drinking water treatment residuals and their toxic impact on human health. Molecules. 25(3):641. https://doi.org/10.3390/molecules25030641

Lin, H., Zhu, H., Tan, J., Wang, H., Wang, Z., Li, P., Zhao, C. & Liu, J. (2019). Comparative analysis of chemical constituents of Moringa oleifera leaves from China and India by ultra-performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry. Molecules. 24(5):942. https://doi.org/10.3390/molecules24050942

López-Teros, V., Ford, J.L., Green, M.H., Tang, G., Grusak, M.A., Quihui-Cota, L., Muzhingi, T., Paz-Cassini, M. & Astiazaran-Garcia, H. (2019). Use of a “Super-child” approach to assess the vitamin A equivalence of Moringa oleifera leaves, develop a compartmental model for vitamin A kinetics, and estimate vitamin A total body stores in young Mexican children. J. Nutr. 2017.https://doi.org/10.3945/jn.117.256974

McFarland, G., La Joie, E., Thomas, P. & Lyons-Weilera, J. (2020). Acute exposure and chronic retention of Aluminium in three vaccine schedules and effects of genetic and environmental variation. J Trace Elements Med Biol. 58:126444, https://doi.org/10.1016/j.jtemb.2019.126444

McGill, M.R. (2016). The past and present of serum aminotransferases and the future of liver injury biomarkers, Exp Clin Sci J. 15:817-828. https://doi.org/10.17179/excli2016-800

Moshtaghie, A.A. Ani, M. & Mirhashemi, S.M. (2006). Comparative effect of Aluminium on serum, liver and brain high and low molecular weight alkaline phosphatase in rats. J Med Sci. 6:848-852. http://dx.doi.org/10.3923/jms.2006.848.852

National Institute of Health (2011). Guide for the Care and Use of Laboratory Animals. 8th ed.Washington D.C., National Academics Press.

Owolabi, J.O. & Ogunnaike, P.O. (2014). Histological evaluation of the effects of Moringa oleifera extract treatment on vital organs of murine models. Merit Res J Med Med Sci. 2(10): 245-257.

Saunders, N.R., Habgood, M.D., Møllgård, K. & Dziegielewska, K.M. (2016) The biological significance of brain barrier mechanisms: help or hindrance in drug delivery to the central nervous system? F1000Res. 5: F1000 Faculty Rev-313. https://doi.org/10.12688/f1000research.7378.1

Suvarna, S.K., Layton, C. & Bancroft, J.D. (2019) Bancroft’s Theory and Practice of Histological Techniques. 8th ed. New York, Elsevier.

Tang, M., Zhang, T., Xue, Y., Wang, S., Huang, M., Tang, Y., Lu, M., Lei, H., Kong, L. & Vang, Y. (2011). Metabonomic studies of biochemical changes in the serum of rats by intra-tracheally instilled titanium oxide nanoparticles. J Nanosci Nanotech. 11: 3065-3074. https://doi.org/10.1166/jnn.2011.3604

Vergara-Jimenez, M., Almatrafi, M.M. & Fernandez, M.L. (2017) Bioactive components in Moringa oleifera leaves protect against chronic disease. Antioxidants (Basel). 6(4): 91. https://doi.org/10.3390/antiox6040091

Villarruel-López, A., López-de la Mora, D.A., Vázquez_Paulino, O.D., Puebla-Mora, A.G., TorresVitela, M.R., Guerrero-Quiroz, L.A. & Nuño, K. (2018). Effect of Moringa oleifera consumptionon diabetic rats. BMC Complement Altern Med. 18:127. https://doi.org/10.1186/s12906-018-2180-2

Voisinet, B.D., Grandin, T., Tatum, J.D., O’connor, S.F. & Struthers, J.J. (1997) Feedlot cattle with calm temperaments have higher average daily gains than cattle with excitable term peraments. J Animal Sci. 75: 892-896. https://doi.org/10.2527/1997.754892x

Wang, X., Cheng, D., Jiang, W. & Ma, Y. (2018). Mechanisms underlying Aluminium neurotoxicity related to 14-3-3ζ protein. Toxicol Sci. 163(1): 45–56. https://doi.org/10.1093/toxsci/kfy021

Yu, L., Jiang, R., Su, Q. & Yu, H. (2014). Hippocampal neuronal metal ion imbalance related oxidative stress in a rat model of chronic Aluminium exposure and neuroprotection of meloxicam. Behav Brain Funct. 10: 6. https://doi.org/10.1186/1744-9081-10-6

Zhang, X.D., Wu, D., Shen, X., Liu, P.X., Yang, N., Zhao, B. & Fan, F.Y. (2011). Size dependent in vivo toxicity of PEG-coated gold nanoparticles. Int J Nanomed. 6: 2071-2081. https://doi.org/10.2147/ijn.s21657