Smartphone Application-Based Addiction Scale: a reliability generalization meta-analysis
Main Article Content
Abstract
Problematic smartphone use is a health problem associated with numerous negative variables whose prevalence has been increasing in recent years. The purpose of this work is to carry out a reliability generalization meta-analysis of the Smartphone Application-Based Addiction Scale (SABAS) by means of which to estimate the reliability of this scale. A systematic search was performed in PsycINFO, Pubmed and Scopus and 31 studies that had applied SABAS and reported Cronbach’s alpha were retrieved. A random effects meta-analysis was performed to estimate the reliability of the test. Heterogeneity was assessed using Cochran’s Q and I2 statistics. Potential moderating variables were examined by meta-regression and subgroup analysis. The combined reliability of the SABAS is α =.81, presenting no risk of publication bias. The country in which the studies were carried out turned out to be a moderating variable of the reliability of the studies analyzed. This meta-analysis shows how the SABAS has good internal consistency and is suitable for use with research purposes. The limitations of the study are presented.
References
American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders: DSM-5. Washington, DC: American Psychiatric Publishing.
Bonett, D. G. (2002). Sample size requirements for testing and estimating coefficient alpha. Journal of Educational and Behavioral Statistics, 27(4), 335-340. https://doi.org/10.3102/10769986027004335
Botella, J. & Sánchez-Meca, J. (2015). Meta-Análisis en Ciencias Sociales y de la Salud. Madrid: Editorial Síntesis.
Carmines, E. G., & Zeller, R. A. (1979). Reliability and validity assessment (17th. Ed.). Newbury Park: Sage publications.
Chen, C. Y., Chen, I. H., Hou, W. L., Potenza, M. N., O’Brien, K. S., Lin, C. Y., & Latner, J. D. (2022). The relationship between children’s problematic internet-related behaviors and psychological distress during the onset of the COVID-19 pandemic: a longitudinal study. Journal of Addiction Medicine, 16(2), e73-e80. https://doi.org/10.1097/adm.0000000000000845
Chen, C. Y., Chen, I. H., O’Brien, K. S., Latner, J. D., & Lin, C. Y. (2021a). Psychological distress and internet-related behaviors between schoolchildren with and without overweight during the COVID-19 outbreak. International Journal of Obesity, 45(3), 677-686. https://doi.org/10.1038/s41366-021-00741-5
Chen, C. Y., Chen, I. H., Pakpour, A. H., Lin, C. Y., & Griffiths, M. D. (2021b). Internetrelated behaviors and psychological distress among schoolchildren during the COVID-19 school hiatus. Cyberpsychology, Behavior, and Social Networking, 24(10), 654-663. https://doi.org/10.1089/cyber.2020.0497
Chen, I. H., Chen, C. Y., Liu, C. H., Ahorsu, D. K., Griffiths, M. D., Chen, Y. P.,...& Wang, S. M. (2021a). Internet addiction and psychological distress among Chinese schoolchildren before and during the COVID-19 outbreak: A latent class analysis. Journal of Behavioral Addictions, 10(3), 731-746. https://doi.org/10.1556/2006.2021.00052
Chen, I. H., Chen, C. Y., Pakpour, A. H., Griffiths, M. D., Lin, C. Y., Li, X. D., & Tsang, H. W. (2021b). Problematic internet-related behaviors mediate the associations between levels of internet engagement and distress among schoolchildren during COVID-19 lockdown: A longitudinal structural equation modeling study. Journal of Behavioral Addictions, 10(1), 135-148. https://doi.org/10.1556/2006.2021.00006
Chen, I. H., Ahorsu, D. K., Pakpour, A. H., Griffiths, M. D., Lin, C. Y., & Chen, C.Y. (2020a). Psychometric properties of three simplified Chinese online-related addictive behavior instruments among mainland Chinese primary school students. Frontiers in Psychiatry, 11, 875. https://doi.org/10.3389/fpsyt.2020.00875
Chen, I. H., Pakpour, A. H., Leung, H., Potenza, M. N., Su, J. A., Lin, C. Y., & Griffiths, M. D. (2020b). Comparing generalized and specific problematic smartphone/internet use: Longitudinal relationships between smartphone application-based addiction and social media addiction and psychological distress. Journal of Behavioral Addictions, 9(2), 410-419. https://doi.org/10.1556/2006.2020.00023
Chen, I. H., Strong, C., Lin, Y. C., Tsai, M. C., Leung, H., Lin, C. Y.,... & Griffiths, M. D. (2020c). Time invariance of three ultra-brief internet-related instruments: Smartphone application-based addiction scale (SABAS), Bergen social media addiction scale (BSMAS), and the nine-item internet gaming disorder scale-short form (IGDS-SF9)(study Part B). Addictive Behaviors, 101, 105960. https://doi.org/10.1016/j.addbeh.2019.04.018
Cicchetti, D. V. (1994). Guidelines, criteria, and rules of thumb for evaluating normed and standardized assessments instruments in psychology. Psychological Assessment, 6, 284–290. https://doi.org/10.1037/1040-3590.6.4.28
Connolly, T., Atherton, G., Cross, L., Piovesan, A., & Kaye, L. K. (2021). The wild west of measurement: Exploring problematic technology use cut off scores and their relation to psychosocial and behavioural outcomes in adolescence. Computers in Human
Behavior, 125, 106965. https://doi.org/10.1016/j.chb.2021.106965
Csibi, S., Demetrovics, Z., & Szabo, A. (2016). Hungarian adaptation and psychometric characteristics of Brief Addiction to Smartphone Scale (BASS). Psychiatria Hungarica, 31(1), 71-77.
Csibi, S., Griffiths, M. D., Cook, B., Demetrovics, Z., & Szabo, A. (2018). The psychometric properties of the smartphone application-based addiction scale (SABAS). International Journal of Mental Health and Addiction, 16(2), 393-403. https://doi.org/10.1007/s11469-017-9787-2
Duan, L., He, J., Li, M., Dai, J., Zhou, Y., Lai, F., & Zhu, G. (2021). Based on a decision tree model for exploring the risk factors of smartphone addiction among children and adolescents in China during the COVID-19 pandemic. Frontiers in Psychiatry, 12, 652356. https://doi.org/10.3389/fpsyt.2021.652356
El Keshky, M. E. S., Al-Qarni, M. S., & Khayat, A. H. (2022). Adaptation and psychometric properties of an Arabic version of the smartphone addiction scale (SAS) in the context of Saudi Arabia. Addictive Behaviors, 131, 107335. https://doi.org/10.1016/j.addbeh.2022.107335
Ellis, D. A., Davidson, B. I., Shaw, H., & Geyer, K. (2019). Do smartphone usage scales predict behavior?. International Journal of Human-Computer Studies, 130, 86-92. https://doi.org/10.1016/j.ijhcs.2019.05.004
Fu, R., Gartlehner, G., Grant, M., Shamliyan, T., Sedrakyan, A., Wilt, T. J.,... & Trikalinos, T. A. (2011). Conducting quantitative synthesis when comparing medical interventions: AHRQ and the Effective Health Care Program. Journal of Clinical Epidemiology, 64(11), 1187-1197. https://doi.org/10.1016/j.jclinepi.2010.08.010
Fung, X. C., Siu, A. M., Potenza, M. N., O’Brien, K. S., Latner, J. D., Chen, C. Y.,... & Lin, C. Y. (2021). Problematic use of internet-related activities and perceived weight stigma in schoolchildren: a longitudinal study across different epidemic periods of COVID-19 in China. Frontiers in Psychiatry, 12, 675839. https://doi.org/10.3389/fpsyt.2021.675839
Galesic, M., & Bosnjak, M. (2009). Effects of questionnaire length on participation and indicators of response quality in a web survey. Public Opinion Quarterly, 73(2), 349-360. https://doi.org/10.1093/poq/nfp031
Gao, L., Zhao, W., Chu, X., Chen, H., & Li, W. (2022). A Network Analysis of the Relationships Between Behavioral Inhibition/Activation Systems and Problematic Mobile Phone Use. Frontiers in Psychiatry, 13, 832933. https://doi.org/10.3389/fpsyt.2022.832933
Geng, J., Bao, L., Wang, H., Wang, J., Gao, T., & Lei, L. (2022). Does childhood maltreatment increase the subsequent risk of problematic smartphone use among adolescents? A two-wave longitudinal study. Addictive Behaviors, 129, 107250.
https://doi.org/10.1016/j.addbeh.2022.107250
*Harris, B., McCredie, M., & Fields, S. (2020). Examining the psychometric properties of the smartphone addiction scale and its short version for use with emerging adults in the US. Computers in Human Behavior Reports, 1, 100011. https://doi.org/10.1016/j.chbr.2020.100011
Harris, B., Regan, T., Schueler, J., & Fields, S. A. (2020). Problematic mobile phone and smartphone use scales: A systematic review. Frontiers in Psychology, 11, 672. https://doi.org/10.3389/fpsyg.2020.00672
Hidalgo-Fuentes, S. (2021). El papel de la autoestima y la soledad en el uso problemático del smartphone: diferencias de género. Revista Psicodebate: Psicología, Cultura y Sociedad., 21(2), 50-60. https://doi.org/10.18682/pd.v21i2.4594
Higgins, J. P., Thompson, S. G., Deeks, J. J., & Altman, D. G. (2003). Measuring inconsistency in meta-analyses. BMJ, 327(7414), 557-560. https://doi.org/10.1136/bmj.327.7414.557
Hosen, I., Al Mamun, F., Sikder, M. T., Abbasi, A. Z., Zou, L., Guo, T., & Mamun, M. A. (2021). Prevalence and associated factors of problematic smartphone use during the COVID-19 pandemic: A Bangladeshi study. Risk Management and Healthcare Policy,
, 3797. https://doi.org/10.2147/rmhp.s325126
IntHout, J., Ioannidis, J. P., Rovers, M. M., & Goeman, J. J. (2016). Plea for routinely presenting prediction intervals in meta-analysis. BMJ open, 6(7), e010247. https://doi.org/10.1136/bmjopen-2015-010247
Irwing, P., Booth, T., & Hughes, D. J. (Eds.). (2018). The Wiley handbook of psychometric testing: A multidisciplinary reference on survey, scale and test development. Chichester,UK: Wiley.
Islam, M. S., Sujan, M. S. H., Tasnim, R., Mohona, R. A., Ferdous, M. Z., Kamruzzaman, S.,... & Pontes, H. M. (2021). Problematic smartphone and social media use among Bangladeshi college and university students amid COVID-19: the role of psychological well-being and pandemic related factors. Frontiers in Psychiatry, 12, 647386. https://doi.org/10.3389/fpsyt.2021.647386
Jahan, I., Hosen, I., Al Mamun, F., Kaggwa, M. M., Griffiths, M. D., & Mamun, M. A. (2021). How has the COVID-19 pandemic impacted internet use behaviors and facilitated problematic internet use? A Bangladeshi study. Psychology Research and Behavior Management, 14, 1127-1138. https://doi.org/10.2147/prbm.s323570
Kim, Y. J., Jang, H. M., Lee, Y., Lee, D., & Kim, D. J. (2018). Effects of internet and smartphone addictions on depression and anxiety based on propensity score matching analysis. International Journal of Environmental Research and Public Health, 15(5), 859. https://doi.org/10.3390/ijerph15050859
Kisamore, J. L., & Brannick, M. T. (2008). An illustration of the consequences of metaanalysis model choice. Organizational Research Methods, 11(1), 35–53. https://doi.org/10.1177/1094428106287393
Leung, H., Pakpour, A. H., Strong, C., Lin, Y. C., Tsai, M. C., Griffiths, M. D.,... & Chen, I. H. (2020). Measurement invariance across young adults from Hong Kong and Taiwan among three internet-related addiction scales: Bergen social media addiction scale (BSMAS), smartphone application-based addiction scale (SABAS), and internet gaming disorder scale-short form (IGDS-SF9)(study Part A). Addictive Behaviors, 101, 105969. https://doi.org/10.1016/j.addbeh.2019.04.027
Li, L., Gao, H., & Xu, Y. (2020). The mediating and buffering effect of academic selfefficacy on the relationship between smartphone addiction and academic procrastination. Computers & Education, 159, 104001. https://doi.org/10.1016/j.compedu.2020.104001
Lin, C. Y., Imani, V., Broström, A., Nilsen, P., Fung, X. C., Griffiths, M. D., & Pakpour, A. H. (2019). Smartphone application-based addiction among Iranian adolescents: A psychometric study. International Journal of Mental Health and Addiction, 17(4), 765-780. https://doi.org/10.1007/s11469-018-0026-2
Lin, Y. H., Chiang, C. L., Lin, P. H., Chang, L. R., Ko, C. H., Lee, Y. H., & Lin, S. H. (2016). Proposed diagnostic criteria for smartphone addiction. PloS one, 11(11),e0163010. https://doi.org/10.1371/journal.pone.0163010
Mahapatra, S. (2019). Smartphone addiction and associated consequences: Role of loneliness and self-regulation. Behaviour & Information Technology, 38(8), 833-844. https://doi.org/10.1080/0144929x.2018.1560499
Mamun, M. A., Rayhan, I., Akter, K., & Griffiths, M. D. (2020). Prevalence and predisposing factors of suicidal ideation among the university students in Bangladesh: a singlesite survey. International Journal of Mental Health and Addiction, 20, 1958-1971. https://doi.org/10.1007/s11469-020-00403-z
Meng, S. Q., Cheng, J. L., Li, Y. Y., Yang, X. Q., Zheng, J. W., Chang, X. W.,... & Shi, J. (2022). Global prevalence of digital addiction in general population: A systematic review and meta-analysis. Clinical Psychology Review, 92, 102128. https://doi.org/10.1016/j.cpr.2022.102128
Montag, C., Wegmann, E., Sariyska, R., Demetrovics, Z., & Brand, M. (2019). How to overcome taxonomical problems in the study of internet use disorders and what to do with “smartphone addiction”? Journal of Behavioral Addictions, 31, 1–7. https://doi.org/10.1556/2006.8.2019.59
Nunnally, J. C., & Bernstein, I. H. (1994). Psychometric theory. New York: McGraw Hill.
O’Dea, S. (2022). Number of smartphone subscriptions worldwide from 2016 to 2027. Statista.
Olson, J. A., Sandra, D. A., Colucci, É. S., Al Bikaii, A., Chmoulevitch, D., Nahas, J.,... & Veissière, S. P. (2022). Smartphone addiction is increasing across the world: A metaanalysis of 24 countries. Computers in Human Behavior, 129, 107138. https://doi.org/10.1016/j.chb.2021.107138
Panova, T., & Carbonell, X. (2018). Is smartphone addiction really an addiction?. Journal of Behavioral Addictions, 7(2), 252-259. https://doi.org/10.1556/2006.7.2018.49
Ratan, Z. A., Parrish, A. M., Zaman, S. B., Alotaibi, M. S., & Hosseinzadeh, H. (2021). Smartphone addiction and associated health outcomes in adult populations: a systematic review. International Journal of Environmental Research and Public Health, 18(22), 12257. https://doi.org/10.3390/ijerph182212257
Robbins, J. M., & Joseph, P. (1985). Experiencing exercise withdrawal: Possible consequences of therapeutic and mastery running. Journal of Sport and Exercise Psychology, 7(1), 23-39. https://doi.org/10.1123/jsp.7.1.23
Saffari, M., Chen, J. S., Wu, H. C., Fung, X. C., Chang, C. C., Chang, Y. L.,... & Lin, C. Y. (2022). Effects of weight-related self-stigma and smartphone addiction on female university students’ physical activity levels. International Journal of Environmental Research and Public Health, 19(5), 2631. https://doi.org/10.3390/ijerph19052631
Sánchez‐Meca, J., López‐López, J. A., & López‐Pina, J. A. (2013). Some recommended statistical analytic practices when reliability generalization studies are conducted. British Journal of Mathematical and Statistical Psychology, 66(3), 402-425. https://doi.org/10.1111/j.2044-8317.2012.02057.x
Sánchez‐Meca, J., Marín‐Martínez, F., López‐López, J. A., Núñez‐Núñez, R. M., Rubio‐ Aparicio, M., López‐García, J. J.,... & López‐Nicolás, R. (2021). Improving thereporting quality of reliability generalization meta‐analyses: The REGEMA checklist. Research Synthesis Methods, 12(4), 516-536. https://doi.org/10.1002/jrsm.1487
Sen, S. (2022). A Reliability Generalization Meta-Analysis of Runco Ideational Behavior Scale. Creativity Research Journal, 34(2), 178-194. https://doi.org/10.1080/10400419.2021.1960719
Soraci, P., Ferrari, A., Antonino, U., & Griffiths, M. D. (2021). Psychometric properties of the Italian version of the smartphone application-based addiction scale (SABAS).International Journal of Mental Health and Addiction, 19(4), 1261-1273. https://doi.org/10.1007/s11469-020-00222-2
Sunday, O. J., Adesope, O. O., & Maarhuis, P. L. (2021). The effects of smartphone addiction on learning: A meta-analysis. Computers in Human Behavior Reports, 4, 100114. https://doi.org/10.1016/j.chbr.2021.100114
Vacha-Haase, T. (1998). Reliability generalization: Exploring variance in measurement error affecting score reliability across studies. Educational and Psychological Measurement, 58(1), 6-20. https://doi.org/10.1177/0013164498058001002
Vacha-Haase, T., Henson, R. K., & Caruso, J. C. (2002). Reliability generalization: Moving toward improved understanding and use of score reliability. Educational and Psychological Measurement, 62(4), 562-569. https://doi.org/10.1177/0013164402062004002
Vally, Z., & Alowais, A. (2020). Assessing risk for smartphone addiction: Validation of an Arabic version of the smartphone application-based addiction scale. International Journal of Mental Health and Addiction, 20, 691-703. https://doi.org/10.1007/s11469-020-00395-w
Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. Journal of Statistical Software, 36(3), 1-48. https://doi.org/10.18637/jss.v036.i03
Vujić, A., & Szabo, A. (2022). Hedonic use, stress, and life satisfaction as predictors of smartphone addiction. Addictive Behaviors Reports, 15, 100411. https://doi.org/10.1016/j.abrep.2022.100411
World Health Organization. (2015). Public Health Implications of Excessive Use of the Internet, Computers, Smartphones and Similar Electronic Devices: Meeting Report. https://apps.who.int/iris/handle/10665/184264
Yam, C. W., Pakpour, A. H., Griffiths, M. D., Yau, W. Y., Lo, C. L. M., Ng, J. M.,... & Leung, H. (2019). Psychometric testing of three Chinese online-related addictive behavior instruments among Hong Kong university students. Psychiatric Quarterly, 90(1), 117-128. https://doi.org/10.1007/s11126-018-9610-7
Yang, S. Y., Wang, Y. C., Lee, Y. C., Lin, Y. L., Hsieh, P. L., & Lin, P. H. (2022). Does Smartphone Addiction, Social Media Addiction, and/or Internet Game Addiction Affect Adolescents’ Interpersonal Interactions?. Healthcare, 10(5), 963. https://doi.org/10.3390/healthcare10050963
Yang, Z., Yan, Z., & Hussain, Z. (2022). The relationships between smartphone distraction, problematic smartphone use and mental health issues amongst a Chinese sample. The Social Science Journal, 1-12. https://doi.org/10.1080/03623319.2022.2066880
Yi, J., Chen, I. H., Lin, C. Y., Li, C. C., Liao, X. L., Wei, Z. H., & Gamble, J. H. (2021). The effect of primary and middle school teachers’ problematic internet use and fear of COVID-19 on psychological need thwarting of online teaching and psychological distress. Healthcare, 9(9), 1199. https://doi.org/10.3390/healthcare9091199
Yildirim, C., & Correia, A. P. (2015). Exploring the dimensions of nomophobia: Development and validation of a self-reported questionnaire. Computers in Human Behavior, 49, 130-137. https://doi.org/10.1016/j.chb.2015.02.059
Zhang, M. X., & Wu, A. M. (2020). Effects of smartphone addiction on sleep quality among Chinese university students: The mediating role of self-regulation and bedtime procrastination. Addictive Behaviors, 111, 106552. https://doi.org/10.1016/j.addbeh.2020.106552
Zhang, W., Pu, J., He, R., Yu, M., Xu, L., He, X.,... & Xiang, B. (2022). Demographic characteristics, family environment and psychosocial factors affecting internet addiction in Chinese adolescents. Journal of Affective Disorders, 315, 130-138. https://doi.org/10.1016/j.jad.2022.07.053
Zhou, H., Dang, L., Lam, L. W., Zhang, M. X., & Wu, A. M. (2021). A cross-lagged panel model for testing the bidirectional relationship between depression and smartphone addiction and the influences of maladaptive metacognition on them in Chinese adolescents. Addictive behaviors, 120, 106978. https://doi.org/10.1016/j.addbeh.2021.106978
Ziegler, M., Kemper, C. J., & Kruyen, P. (2014). Short scales-five misunderstandings and ways to overcome them. Journal of Individual Differences, 35, 185–189. https://doi.org/10.1027/1614-0001/a000148