Embryology of the Female Genital System
Contenido principal del artículo
Resumen
Until the seventh week of human embryonic development of both sexes have very similar primordia of genitalia represented by two undifferentiated gonads two mesonephric ducts, which originate the male genital tract and two paramesonephric ducts develop the female genital tract. Genital tubercle, two labiouretrales folds and two labioscrotal folds: Externally the same basic elements that are distinguished in both sexes. From SRY gene expression that occurs during the eighth week a series of morphophysiological events leading establishing a clear sexual dimorphism starts. If the resulting gonad is a testis produced hormones induce masculinization of internal and external genitalia, as well as outline the breast. However, if an ovary is formed or not formed gonads, internal and external genitalia develop in female sense. Genetic sex is not always related to the differentiation of external genitalia or genital tract that is why we consider separately each. This article explores the morphological differentiation into male and female connection, as well as the molecular regulation of the gonads, genital tract and external genitalia.
Citas
Cai, Y. Revisiting old vaginal topics: conversion of the Müllerian vagina and origin of the “sinus” vagina. Int. J. Dev. Biol., 53:925-34, 2009.
Carlson, B. Embriología Humana y Biología del Desarrollo. Madrid, Elsevier Mosby, 2009.
Cunha, G. R. The dual origin of vaginal epithelium. Am. J. Anat., 143:387-92, 1975.
Cunha, G. R. Epithelial–stromal interactions in development of the urogenital tract. Int. Rev. Cytol., 47:137-94, 1976.
Daftary, G. S. & Taylor, H. S. Endocrine regulation of Hox genes. Endocr. Rev., 27:331-55, 2006.
Dunlap, K. A.; Filant, J.; Hayashi, K.; Rucker, 3rd, E. B.; Song, G.; Deng, J. M.; Behringer, R. R.; Demayo, F. J.; Lydon, J.; Jeong, J. & Spencer, T. E. Postnatal deletion of Wnt7a inhibits uterine gland morphogenesis and compromises adult fertility in mice. Biol. Reprod., 85:386-96, 2011.
Garat, J. M. & Ruiz de Termiño, M. Estados intersexuales. En: Pomerol, J. M. & Arrondo, J. L.. (Ed.). Práctica Andrológica. Barcelona, Masson Salvat, 1994.
Gilbert, S. Biología del Desarrollo. Buenos Aires, Médica Panamericana, 2005.
Gomez Dumm, C. Embriología humana. Buenos Aires, El Ateneo, 2003.
Hashimoto, R. Development of the human Mullerian duct in the sexually undifferentiated stage. Anat. Rec. A Discov. Mol. Cell Evol. Biol., 272:514-9, 2003.
Jordan, B. K. & Vilain, E. Sry and the genetics of sex determination. Adv. Exp. Med. Biol., 511:1- 14, 2002.
Kobayashi, A. & Behringer, R. R. Developmental genetics of the female reproductive tract in mammals. Nat. Rev. Genet., 4:969-80, 2003.
Kobayashi, A.; Shawlot, W.; Kania, A. & Behringer, R. R. Requirement of Lim1 for female reproductive tract development. Development, 131:539-49, 2004.
Kurita, T.; Cooke, P. S. & Cunha, G. R. Epithelialstromal tissue interaction in paramesonephric (Müllerian) epithelial differentiation. Dev. Biol., 240:194-211, 2001.
Kurita, T. & Nakamura, H. Embryology of the uterus. In: Aplin, J. D. (Ed.). Endometrium. London, Informa UK Ltd., 2008. pp.1-18.
Kurita, T. Normal and abnormal epithelial differentiation in the female reproductive tract. Differentiation, 82(3):117-26, 2011.
Massé, J.; Watrin, T.; Laurent, A.; Deschamps, S.; Guerrier, D. & Pellerin, I. The developing female genital tract: from genetics to epigenetics. Int. J. Dev. Biol., 53(2-3):411-24, 2009.
Mericskay, M.; Kitajewski, J. & Sassoon, D. Wnt5a is required for proper epithelial–mesenchymal interactions in the uterus. Development, 131(9):2061-72, 2004.
Miyamoto, N.; Yoshida, M.; Kuratani, S.; Matsuo, I. & Aizawa, S. Defects of urogenital development in mice lacking Emx2. Development, 124(9):1653-64, 1997.
Mortlock, D. P. & Innis, J. W. Mutation of HOXA13 inhand-foot-genital syndrome. Nat. Genet., 15(2):179-80, 1997.
O’Rahilly, R. Prenatal human development. In: Wynn, R. M. & Jollie, W.P. (Eds.), Biology of the Uterus. New York, Plenum Medical Book Company, 1989, pp.35-56.
Orvis, G. D. & Behringer, R. R. Cellular mechanisms of Müllerian duct formation in the mouse. Dev. Biol., 306(2):493-504, 2007.
Philibert, P.; Biason-Lauber, A.; Rouzier, R.; Pienkowski, C.; Paris, F.; Konrad, D.; Schoenle, E. & Sultan, C. Identification and functional analysis of a new WNT4 gene mutation among 28 adolescent girls with primary amenorrhea and müllerian duct abnormalities: a French collaborative study. J. Clin. Endocrinol. Metab., 93(3):895-900, 2008.
Rey, R. Diferenciación sexual embriofetal: De las moléculas a la Anatomía. Rev. Chil. Anat., 19(1):75-82, 2001.
Rojas, M.; Montenegro, M. A. & Rodriguez, A Embriología del aparato genital de la mujer. En:Perez-Sanchez, A. (Ed.). Ginecología. 3ª ed. Santiago, Mediterraneo Ltda., 2003. pp.25-33.
Sadler T. W. Langman Embriología Médica. México D.F., Wolters Kluwer Lippincott Williams & Wilkins, 2010.
Solari, A. J. Genética Humana. Fundamentos y Aplicaciones en Medicina. 3ª Ed. Madrid, Médica Panamericana, 2004.
Taylor, H. Endocrine disruptors affect developmental programming of Hox gene expression. Fertil.Steril., 89(2 Suppl):e57-8, 2008.
Vainio, S.; Heikkila, M.; Kispert, A.; Chin, N. & McMahon, A. P. Female development in mammals is regulated by Wnt-4 signalling. Nature,397(6718):405-9, 1999.
Zhao, Y. & Potter, S. S. Functional specificity of the Hoxa13 homeobox. Development, 128(16):3197- 207, 2001.