Inflammatory and endothelial dysfunction markers in hypertensive patients with type 2 diabetes mellitus

Inflammatory and endothelial dysfunction markers in hypertensive patients with type 2 diabetes mellitus

Main Article Content

Diego Tene
Jorge Robalino
Adriana Pedreáñez

Abstract

Hypertension and diabetes are two of the main risk factors for the development of cardiovascular disease, and both pathologies overlap significantly in their pathophysiological mechanisms. The aim of this study was to determine the concentration of inflammatory markers and endothelial dysfunction in patients with hypertension and type 2 diabetes mellitus, to compare with healthy individuals, and to determine whether the coexistence of both pathologies has a different effect on the behavior of these markers. A descriptive, correlational, cross-sectional research was carried out from July 2022 to February 2023. A total of 120 individuals were selected for this study (30 controls, 30 with type 2 diabetes mellitus, 30 with hypertension and 30 with diabetes plus hypertension). Each subject had a fasting blood sample drawn for determination of total cholesterol, triglycerides, HDL cholesterol, LDL cholesterol, ultrasensitive C-reactive protein (hs-CRP), glycosylated hemoglobin, sICAM-1, sE-selectin, IL-6 and TNF-α. A significant increase in the concentration of sICAM-1, sE-selectin, IL-6 and TNF-α was found in diabetic, hypertensive and diabetic patients with hypertension when compared to controls (p<0.0001). The coexistence of diabetes and hypertension did not represent a significant elevation in the concentration of markers of endothelial dysfunction and inflammation. In conclusion, our results suggest endothelial activation as well as an inflammatory state in patients with diabetes and hypertension, indicated by elevated levels of circulating adhesion molecules and proinflammatory cytokines. The simultaneous presence of diabetes and hypertension did not have an additive effect on the levels of these molecules.

References

American Diabetes Association (2021). 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2021. Diabetes care, 44(Suppl 1), S15–S33. https://doi.org/10.2337/dc21-S002

Chapman, M.J., & Sposito, A.C. (2008). Hypertension and dyslipidaemia in obesity and insulin resistance: pathophysiology, impact on atherosclerotic disease and pharmacotherapy. Pharmacology & therapeutics, 117(3), 354–373. https://doi.org/10.1016/j.pharmthera.2007.10.004

Cheung, B.M., Wat, N.M., Tso, A.W., Tam, S., Thomas, G.N., Leung, G.M., Tse, H.F., Woo, J., Janus, E.D., Lau, C.P., Lam, T.H., & Lam, K.S. (2008). Association between raised blood pressure and dysglycemia in Hong Kong Chinese. Diabetes care, 31(9), 1889–1891. https://doi.org/10.2337/dc08-0405

Chobanian A.V. (2017). Guidelines for the Management of Hypertension. The Medical clinics of North America, 101(1), 219–227. https://doi.org/10.1016/j.mcna.2016.08.016

Derosa, G., & Maffioli, P. (2016). A review about biomarkers for the investigation of vascular function and impairment in diabetes mellitus. Vascular health and risk management, 12, 415–419. https://doi.org/10.2147/VHRM.S64460

Di Palo, K.E., & Barone, N.J. (2020). Hypertension and Heart Failure: Prevention, Targets, and Treatment. Heart failure clinics, 16(1), 99–106. https://doi.org/10.1016/j.hfc.2019.09.001

Fan, J., & Watanabe, T. (2022). Atherosclerosis: Known and unknown. Pathology international, 72(3), 151–160. https://doi.org/10.1111/pin.13202

Feng, Y.M., Thijs, L., Zhang, Z.Y., Yang, W.Y., Huang, Q.F., Wei, F.F., Kuznetsova, T., Jennings, A.M., Delles, C., Lennox, R., Verhamme, P., Dominiczak, A., & Staessen, J.A. (2018). Glomerular function in relation to circulating adhesion molecules and inflammation markers in a general population.

Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association, 33(3), 426–435. https://doi.org/10.1093/ndt/gfx256

Giblin, M.J., Smith, T.E., Winkler, G., Pendergrass, H.A., Kim, M.J., Capozzi, M.E., Yang, R., McCollum, G.W., & Penn, J.S. (2021). Nuclear factor of activated T-cells (NFAT) regulation of IL-1β-induced retinal vascular inflammation. Biochimica et biophysica acta. Molecular basis of

disease, 1867(12), 166238. https://doi.org/10.1016/j.bbadis.2021.166238

Goveia, J., Stapor, P., & Carmeliet, P. (2014). Principles of targeting endothelial cell metabolism to treat angiogenesis and endothelial cell dysfunction in disease. EMBO molecular medicine, 6(9), 1105–1120. https://doi.org/10.15252/emmm.201404156

Jia G, Sowers JR. Hypertension in Diabetes: An Update of Basic Mechanisms and Clinical Disease. Hypertension. 2021 Nov;78(5):1197-1205. https:/doi.org/10.1161/HYPERTENSIONAHA.121.17981. Epub 2021 Oct 4. PMID: 34601960; PMCID: PMC8516748.

Kamalumpundi, V., Shams, E., Tucker, C., Cheng, L., Peterson, J., Thangavel, S., Ofori, O., & Correia, M. (2022). Mechanisms and pharmacotherapy of hypertension associated with type 2 diabetes. Biochemical pharmacology, 206, 115304. https://doi.org/10.1016/j.bcp.2022.115304

Landsberg, L., & Molitch, M. (2004). Diabetes and hypertension: pathogenesis, prevention and treatment. Clinical and experimental hypertension (New York, N.Y. : 1993), 26(7-8), 621–628. https://doi.org/10.1081/ceh-200031945

Lang, P.P., Bai, J., Zhang, Y.L., Yang, X.L., Xia, Y.L., Lin, Q.Y., & Li, H.H. (2020). Blockade of intercellular adhesion molecule-1 prevents angiotensin II-induced hypertension and vascular dysfunction. Laboratory investigation; a journal of technical methods and pathology, 100(3), 378–386. https://doi.org/10.1038/s41374-019-0320-z

Liu, J., Yang, F., Yang, X. P., Jankowski, M., & Pagano, P.J. (2003). NAD(P)H oxidase mediates angiotensin II-induced vascular macrophage infiltration and medial hypertrophy. Arteriosclerosis, thrombosis, and vascular biology, 23(5), 776–782. https://doi.org/10.1161/01.ATV.0000066684.37829.16

Mancusi, C., Izzo, R., di Gioia, G., Losi, M.A., Barbato, E., & Morisco, C. (2020). Insulin Resistance the Hinge Between Hypertension and Type 2 Diabetes. High blood pressure & cardiovascular prevention : the official journal of the Italian Society of Hypertension, 27(6), 515–526. https://doi.org/10.1007/s40292-020-00408-8

Manigrasso, M.B., Juranek, J., Ramasamy, R., & Schmidt, A.M. (2014). Unlocking the biology of RAGE in diabetic microvascular complications. Trends in endocrinology and metabolism: TEM, 25(1), 15–22. https://doi.org/10.1016/j.tem.2013.08.002

Mensah, G.A., Roth, G.A., & Fuster, V. (2019). The Global Burden of Cardiovascular Diseases and Risk Factors: 2020 and Beyond. Journal of the American College of Cardiology, 74(20), 2529–2532. https://doi.org/10.1016/j.jacc.2019.10.009

Mills, K.T., Bundy, J.D., Kelly, T.N., Reed, J. E., Kearney, P.M., Reynolds, K., Chen, J., & He, J. (2016). Global Disparities of Hypertension Prevalence and Control: A Systematic Analysis of PopulationBased Studies From 90 Countries. Circulation, 134(6), 441–450. https://doi.org/10.1161/CIRCULATIONAHA.115.018912

Muñoz, N., Pedreañez, A., & Mosquera, J. (2020). Angiotensin II Induces Increased Myocardial Expression of Receptor for Advanced Glycation End Products, Monocyte/Macrophage Infiltration and Circulating Endothelin-1 in Rats With Experimental Diabetes. Canadian journal of diabetes, 44(7), 651–656. https://doi.org/10.1016/j.jcjd.2020.03.010

Ogurtsova, K., da Rocha Fernandes, J.D., Huang, Y., Linnenkamp, U., Guariguata, L., Cho, N.H., Cavan, D., Shaw, J.E., & Makaroff, L.E. (2017). IDF Diabetes Atlas: Global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes research and clinical practice, 128, 40–50.

https://doi.org/10.1016/j.diabres.2017.03.024

Pedreanez, A., Mosquera, J., Munoz, N., Robalino, J., & Tene, D. (2022). Diabetes, heart damage, and angiotensin II. What is the relationship link between them? A minireview. Endocrine regulations, 56(1), 55–65. https://doi.org/10.2478/enr-2022-0007

Petreski, T., Piko, N., Ekart, R., Hojs, R., & Bevc, S. (2021). Review on Inflammation Markers in Chronic Kidney Disease. Biomedicines, 9(2), 182. https://doi.org/10.3390/biomedicines9020182

Przezak A, Bielka W, Pawlik A. Hypertension and Type 2 Diabetes-The Novel Treatment Possibilities. Int J Mol Sci. 2022 Jun 10;23(12):6500. doi: 10.3390/ijms23126500. PMID: 35742943; PMCID: PMC9224227.

Rohlenova, K., Veys, K., Miranda-Santos, I., De Bock, K., & Carmeliet, P. (2018). Endothelial Cell Metabolism in Health and Disease. Trends in cell biology, 28(3), 224–236. https://doi.org/10.1016/j.tcb.2017.10.010

Rubio-Guerra, A.F., & Durán-Salgado, M.B. (2011). Insulina, sistema renina-angiotensinaaldosterona y disfunción endotelial [Insulin, renin-angiotensin system, aldosterone and endothelial dysfunction]. Revista medica del Instituto Mexicano del Seguro Social, 49(6), 581–584.

Ruotsalainen, E., Stancáková, A., Vauhkonen, I., Salmenniemi, U., Pihlajamäki, J., Punnonen, K., & Laakso, M. (2010). Changes in cytokine levels during acute hyperinsulinemia in offspring of type 2 diabetic subjects. Atherosclerosis, 210(2), 536–541. https://doi.org/10.1016/j.atherosclerosis.2009.11.036

Sanabria-de la Torre, R., García-Fontana, C., González-Salvatierra, S., Andújar-Vera, F., MartínezHeredia, L., García-Fontana, B., & Muñoz-Torres, M. (2022). The Contribution of Wnt Signaling to Vascular Complications in Type 2 Diabetes Mellitus. International journal of molecular sciences, 23(13), 6995. https://doi.org/10.3390/ijms23136995

Sowers J.R. (2013). Diabetes mellitus and vascular disease. Hypertension (Dallas, Tex. : 1979), 61(5), 943–947. https://doi.org/10.1161/HYPERTENSIONAHA.111.00612

Srivastava, P., Badhwar, S., Chandran, D.S., Jaryal, A.K., Jyotsna, V.P., & Deepak, K.K. (2019). Imbalance between Angiotensin II - Angiotensin (1-7) system is associated with vascular endothelial dysfunction and inflammation in type 2 diabetes with newly diagnosed hypertension. Diabetes & metabolic syndrome, 13(3), 2061–2068. https://doi.org/10.1016/j.dsx.2019.04.042

Usui I. (2023). Common metabolic features of hypertension and type 2 diabetes. Hypertension research : official journal of the Japanese Society of Hypertension, 10.1038/s41440-023-01233-x. Advance online publication. https://doi.org/10.1038/s41440-023-01233-x

Viigimaa, M., Sachinidis, A., Toumpourleka, M., Koutsampasopoulos, K., Alliksoo, S., & Titma, T. (2020). Macrovascular Complications of Type 2 Diabetes Mellitus. Current vascular pharmacology, 18(2), 110–116. https://doi.org/10.2174/1570161117666190405165151

Watanabe, T., & Sato, K. (2020). Roles of the kisspeptin/GPR54 system in pathomechanisms of atherosclerosis. Nutrition, metabolism, and cardiovascular diseases : NMCD, 30(6), 889–895. https://doi.org/10.1016/j.numecd.2020.02.017

Xiao, L., & Harrison, D.G. (2020). Inflammation in Hypertension. The Canadian journal of cardiology, 36(5), 635–647. https://doi.org/10.1016/j.cjca.2020.01.013

Yamagishi, S., Maeda, S., Matsui, T., Ueda, S., Fukami, K., & Okuda, S. (2012). Role of advanced glycation end products (AGEs) and oxidative stress in vascular complications in diabetes. Biochimica et biophysica acta, 1820(5), 663–671. https://doi.org/10.1016/j.bbagen.2011.03.014

Yamazaki, Y., Wake, H., Nishinaka, T., Hatipoglu, O.F., Liu, K., Watanabe, M., Toyomura, T., Mori, S., Yoshino, T., Nishibori, M., & Takahashi, H. (2021). Involvement of multiple scavenger receptors in advanced glycation end product-induced vessel tube formation in endothelial cells. Experimental cell research, 408(1), 112857. https://doi.org/10.1016/j.yexcr.2021.112857

Zhang, H.N., Xu, Q.Q., Thakur, A., Alfred, M.O., Chakraborty, M., Ghosh, A., & Yu, X.B. (2018). Endothelial dysfunction in diabetes and hypertension: Role of microRNAs and long non-coding RNAs. Life sciences, 213, 258–268. https://doi.org/10.1016/j.lfs.2018.10.028