Marcadores inflamatorios y de disfunción endotelial en pacientes hipertensos y con diabetes mellitus tipo 2
Contenido principal del artículo
Resumen
La hipertensión y la diabetes son dos de los principales factores de riesgo para el desarrollo de enfermedades cardiovasculares, y ambas patologías se superponen de manera significativa en sus mecanismos fisiopatológicos. El objetivo de este estudio fue determinar la concentración de marcadores inflamatorios y de disfunción endotelial en pacientes con hipertensión y diabetes mellitus tipo 2, comparar con individuos sanos y determinar si la coexistencia de ambas patologías tiene un efecto diferente en el comportamiento de estos marcadores. Se realizó una investigación de tipo descriptiva, correlacional, de corte transversal, en el periodo comprendido desde el mes de julio del año 2022 a febrero del año 2023. Se seleccionaron 120 individuos para este estudio: (30 sujetos controles, 30 con diabetes mellitus tipo 2, 30 hipertensos y 30 con diabetes más hipertensión). A cada sujeto se le extrajo una muestra de sangre en ayunas para la determinación de colesterol total, triglicéridos, HDL colesterol, LDL colesterol, proteína C reactiva ultrasensible (PCR-us), hemoglobina glicosilada, sICAM-1, sE-selectina, IL-6 y TNF-α. Se encontró un incremento significativo en la concentración de sICAM-1, sE-selectina, IL-6 y TNF-α en los pacientes diabéticos, hipertensos y en los diabéticos con hipertensión al compararlos con los controles (p<0.0001). La coexistencia de diabetes e hipertensión no representó una elevación significativa en la concentración de los marcadores de disfunción endotelial e inflamación. En conclusión, nuestros resultados sugieren la activación endotelial, así como un estado inflamatorio en pacientes con diabetes e hipertensión, indicada por niveles elevados de moléculas de adhesión circulantes y citocinas proinflamatorias. La presencia simultánea de diabetes e hipertensión no tuvo un efecto aditivo en los niveles de éstas moléculas.
Citas
American Diabetes Association (2021). 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2021. Diabetes care, 44(Suppl 1), S15–S33. https://doi.org/10.2337/dc21-S002
Chapman, M.J., & Sposito, A.C. (2008). Hypertension and dyslipidaemia in obesity and insulin resistance: pathophysiology, impact on atherosclerotic disease and pharmacotherapy. Pharmacology & therapeutics, 117(3), 354–373. https://doi.org/10.1016/j.pharmthera.2007.10.004
Cheung, B.M., Wat, N.M., Tso, A.W., Tam, S., Thomas, G.N., Leung, G.M., Tse, H.F., Woo, J., Janus, E.D., Lau, C.P., Lam, T.H., & Lam, K.S. (2008). Association between raised blood pressure and dysglycemia in Hong Kong Chinese. Diabetes care, 31(9), 1889–1891. https://doi.org/10.2337/dc08-0405
Chobanian A.V. (2017). Guidelines for the Management of Hypertension. The Medical clinics of North America, 101(1), 219–227. https://doi.org/10.1016/j.mcna.2016.08.016
Derosa, G., & Maffioli, P. (2016). A review about biomarkers for the investigation of vascular function and impairment in diabetes mellitus. Vascular health and risk management, 12, 415–419. https://doi.org/10.2147/VHRM.S64460
Di Palo, K.E., & Barone, N.J. (2020). Hypertension and Heart Failure: Prevention, Targets, and Treatment. Heart failure clinics, 16(1), 99–106. https://doi.org/10.1016/j.hfc.2019.09.001
Fan, J., & Watanabe, T. (2022). Atherosclerosis: Known and unknown. Pathology international, 72(3), 151–160. https://doi.org/10.1111/pin.13202
Feng, Y.M., Thijs, L., Zhang, Z.Y., Yang, W.Y., Huang, Q.F., Wei, F.F., Kuznetsova, T., Jennings, A.M., Delles, C., Lennox, R., Verhamme, P., Dominiczak, A., & Staessen, J.A. (2018). Glomerular function in relation to circulating adhesion molecules and inflammation markers in a general population.
Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association, 33(3), 426–435. https://doi.org/10.1093/ndt/gfx256
Giblin, M.J., Smith, T.E., Winkler, G., Pendergrass, H.A., Kim, M.J., Capozzi, M.E., Yang, R., McCollum, G.W., & Penn, J.S. (2021). Nuclear factor of activated T-cells (NFAT) regulation of IL-1β-induced retinal vascular inflammation. Biochimica et biophysica acta. Molecular basis of
disease, 1867(12), 166238. https://doi.org/10.1016/j.bbadis.2021.166238
Goveia, J., Stapor, P., & Carmeliet, P. (2014). Principles of targeting endothelial cell metabolism to treat angiogenesis and endothelial cell dysfunction in disease. EMBO molecular medicine, 6(9), 1105–1120. https://doi.org/10.15252/emmm.201404156
Jia G, Sowers JR. Hypertension in Diabetes: An Update of Basic Mechanisms and Clinical Disease. Hypertension. 2021 Nov;78(5):1197-1205. https:/doi.org/10.1161/HYPERTENSIONAHA.121.17981. Epub 2021 Oct 4. PMID: 34601960; PMCID: PMC8516748.
Kamalumpundi, V., Shams, E., Tucker, C., Cheng, L., Peterson, J., Thangavel, S., Ofori, O., & Correia, M. (2022). Mechanisms and pharmacotherapy of hypertension associated with type 2 diabetes. Biochemical pharmacology, 206, 115304. https://doi.org/10.1016/j.bcp.2022.115304
Landsberg, L., & Molitch, M. (2004). Diabetes and hypertension: pathogenesis, prevention and treatment. Clinical and experimental hypertension (New York, N.Y. : 1993), 26(7-8), 621–628. https://doi.org/10.1081/ceh-200031945
Lang, P.P., Bai, J., Zhang, Y.L., Yang, X.L., Xia, Y.L., Lin, Q.Y., & Li, H.H. (2020). Blockade of intercellular adhesion molecule-1 prevents angiotensin II-induced hypertension and vascular dysfunction. Laboratory investigation; a journal of technical methods and pathology, 100(3), 378–386. https://doi.org/10.1038/s41374-019-0320-z
Liu, J., Yang, F., Yang, X. P., Jankowski, M., & Pagano, P.J. (2003). NAD(P)H oxidase mediates angiotensin II-induced vascular macrophage infiltration and medial hypertrophy. Arteriosclerosis, thrombosis, and vascular biology, 23(5), 776–782. https://doi.org/10.1161/01.ATV.0000066684.37829.16
Mancusi, C., Izzo, R., di Gioia, G., Losi, M.A., Barbato, E., & Morisco, C. (2020). Insulin Resistance the Hinge Between Hypertension and Type 2 Diabetes. High blood pressure & cardiovascular prevention : the official journal of the Italian Society of Hypertension, 27(6), 515–526. https://doi.org/10.1007/s40292-020-00408-8
Manigrasso, M.B., Juranek, J., Ramasamy, R., & Schmidt, A.M. (2014). Unlocking the biology of RAGE in diabetic microvascular complications. Trends in endocrinology and metabolism: TEM, 25(1), 15–22. https://doi.org/10.1016/j.tem.2013.08.002
Mensah, G.A., Roth, G.A., & Fuster, V. (2019). The Global Burden of Cardiovascular Diseases and Risk Factors: 2020 and Beyond. Journal of the American College of Cardiology, 74(20), 2529–2532. https://doi.org/10.1016/j.jacc.2019.10.009
Mills, K.T., Bundy, J.D., Kelly, T.N., Reed, J. E., Kearney, P.M., Reynolds, K., Chen, J., & He, J. (2016). Global Disparities of Hypertension Prevalence and Control: A Systematic Analysis of PopulationBased Studies From 90 Countries. Circulation, 134(6), 441–450. https://doi.org/10.1161/CIRCULATIONAHA.115.018912
Muñoz, N., Pedreañez, A., & Mosquera, J. (2020). Angiotensin II Induces Increased Myocardial Expression of Receptor for Advanced Glycation End Products, Monocyte/Macrophage Infiltration and Circulating Endothelin-1 in Rats With Experimental Diabetes. Canadian journal of diabetes, 44(7), 651–656. https://doi.org/10.1016/j.jcjd.2020.03.010
Ogurtsova, K., da Rocha Fernandes, J.D., Huang, Y., Linnenkamp, U., Guariguata, L., Cho, N.H., Cavan, D., Shaw, J.E., & Makaroff, L.E. (2017). IDF Diabetes Atlas: Global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes research and clinical practice, 128, 40–50.
https://doi.org/10.1016/j.diabres.2017.03.024
Pedreanez, A., Mosquera, J., Munoz, N., Robalino, J., & Tene, D. (2022). Diabetes, heart damage, and angiotensin II. What is the relationship link between them? A minireview. Endocrine regulations, 56(1), 55–65. https://doi.org/10.2478/enr-2022-0007
Petreski, T., Piko, N., Ekart, R., Hojs, R., & Bevc, S. (2021). Review on Inflammation Markers in Chronic Kidney Disease. Biomedicines, 9(2), 182. https://doi.org/10.3390/biomedicines9020182
Przezak A, Bielka W, Pawlik A. Hypertension and Type 2 Diabetes-The Novel Treatment Possibilities. Int J Mol Sci. 2022 Jun 10;23(12):6500. doi: 10.3390/ijms23126500. PMID: 35742943; PMCID: PMC9224227.
Rohlenova, K., Veys, K., Miranda-Santos, I., De Bock, K., & Carmeliet, P. (2018). Endothelial Cell Metabolism in Health and Disease. Trends in cell biology, 28(3), 224–236. https://doi.org/10.1016/j.tcb.2017.10.010
Rubio-Guerra, A.F., & Durán-Salgado, M.B. (2011). Insulina, sistema renina-angiotensinaaldosterona y disfunción endotelial [Insulin, renin-angiotensin system, aldosterone and endothelial dysfunction]. Revista medica del Instituto Mexicano del Seguro Social, 49(6), 581–584.
Ruotsalainen, E., Stancáková, A., Vauhkonen, I., Salmenniemi, U., Pihlajamäki, J., Punnonen, K., & Laakso, M. (2010). Changes in cytokine levels during acute hyperinsulinemia in offspring of type 2 diabetic subjects. Atherosclerosis, 210(2), 536–541. https://doi.org/10.1016/j.atherosclerosis.2009.11.036
Sanabria-de la Torre, R., García-Fontana, C., González-Salvatierra, S., Andújar-Vera, F., MartínezHeredia, L., García-Fontana, B., & Muñoz-Torres, M. (2022). The Contribution of Wnt Signaling to Vascular Complications in Type 2 Diabetes Mellitus. International journal of molecular sciences, 23(13), 6995. https://doi.org/10.3390/ijms23136995
Sowers J.R. (2013). Diabetes mellitus and vascular disease. Hypertension (Dallas, Tex. : 1979), 61(5), 943–947. https://doi.org/10.1161/HYPERTENSIONAHA.111.00612
Srivastava, P., Badhwar, S., Chandran, D.S., Jaryal, A.K., Jyotsna, V.P., & Deepak, K.K. (2019). Imbalance between Angiotensin II - Angiotensin (1-7) system is associated with vascular endothelial dysfunction and inflammation in type 2 diabetes with newly diagnosed hypertension. Diabetes & metabolic syndrome, 13(3), 2061–2068. https://doi.org/10.1016/j.dsx.2019.04.042
Usui I. (2023). Common metabolic features of hypertension and type 2 diabetes. Hypertension research : official journal of the Japanese Society of Hypertension, 10.1038/s41440-023-01233-x. Advance online publication. https://doi.org/10.1038/s41440-023-01233-x
Viigimaa, M., Sachinidis, A., Toumpourleka, M., Koutsampasopoulos, K., Alliksoo, S., & Titma, T. (2020). Macrovascular Complications of Type 2 Diabetes Mellitus. Current vascular pharmacology, 18(2), 110–116. https://doi.org/10.2174/1570161117666190405165151
Watanabe, T., & Sato, K. (2020). Roles of the kisspeptin/GPR54 system in pathomechanisms of atherosclerosis. Nutrition, metabolism, and cardiovascular diseases : NMCD, 30(6), 889–895. https://doi.org/10.1016/j.numecd.2020.02.017
Xiao, L., & Harrison, D.G. (2020). Inflammation in Hypertension. The Canadian journal of cardiology, 36(5), 635–647. https://doi.org/10.1016/j.cjca.2020.01.013
Yamagishi, S., Maeda, S., Matsui, T., Ueda, S., Fukami, K., & Okuda, S. (2012). Role of advanced glycation end products (AGEs) and oxidative stress in vascular complications in diabetes. Biochimica et biophysica acta, 1820(5), 663–671. https://doi.org/10.1016/j.bbagen.2011.03.014
Yamazaki, Y., Wake, H., Nishinaka, T., Hatipoglu, O.F., Liu, K., Watanabe, M., Toyomura, T., Mori, S., Yoshino, T., Nishibori, M., & Takahashi, H. (2021). Involvement of multiple scavenger receptors in advanced glycation end product-induced vessel tube formation in endothelial cells. Experimental cell research, 408(1), 112857. https://doi.org/10.1016/j.yexcr.2021.112857
Zhang, H.N., Xu, Q.Q., Thakur, A., Alfred, M.O., Chakraborty, M., Ghosh, A., & Yu, X.B. (2018). Endothelial dysfunction in diabetes and hypertension: Role of microRNAs and long non-coding RNAs. Life sciences, 213, 258–268. https://doi.org/10.1016/j.lfs.2018.10.028